Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (1): 134201   https://doi.org/10.1007/s11467-017-0707-5
  本期目录
Evolution of finite energy Airy beams in cubic-quintic atomic vapor system
Zhen-Kun Wu1, Hao Guo1, Wei Wang2(), Yu-Zong Gu1()
1. Institute of Microsystem Physics, School of Physics and Electronics, Henan University, Kaifeng 475004, China
2. Key Laboratory for Physical Electronics and Devices of the Ministry of Education, The School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 全文: PDF(22526 KB)  
Abstract

In a numerical investigation, we demonstrate the evolution of a one-dimensional and two-dimensional finite energy Airy beam in a ?-type three-level atomic vapor with linear, cubic, and quintic susceptibilities considered simultaneously with the dressing effect. Quasi-solitons and soliton pairs are observed due to this competition mechanism. We find that the frequency detuning of the pump field and its power greatly affect the formation and evolution of generated solitons. In general, around the twophoton resonance point and for low intensities of the pump field, it is less difficult to form solitons. This investigation enriches the study of the propagation properties of Airy beams and soliton generation in atomic vapor.

Key wordsairy beam    cubic-quintic nonlinear    soliton    atomic vapor system
收稿日期: 2017-05-02      出版日期: 2017-09-07
Corresponding Author(s): Wei Wang,Yu-Zong Gu   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(1): 134201.
Zhen-Kun Wu, Hao Guo, Wei Wang, Yu-Zong Gu. Evolution of finite energy Airy beams in cubic-quintic atomic vapor system. Front. Phys. , 2018, 13(1): 134201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0707-5
https://academic.hep.com.cn/fop/CN/Y2018/V13/I1/134201
1 G. A.Siviloglou and D. N.Christodoulides, Accelerating finite energy Airy beams, Opt. Lett. 32(8), 979 (2007)
https://doi.org/10.1364/OL.32.000979
2 G. A.Siviloglou, J.Broky, A.Dogariu, and D. N.Christodoulides, Observation of accelerating Airy beams, Phys. Rev. Lett. 99(21), 213901(2007)
https://doi.org/10.1103/PhysRevLett.99.213901
3 J.Broky, G. A.Siviloglou,A.Dogariu, and D. N.Christodoulides, Self-healing properties of optical Airy beams, Opt. Express16(17), 12880(2008)
https://doi.org/10.1364/OE.16.012880
4 M. V.Berryand N. L.Balazs, Nonspreading wave packets, Am. J. Phys. 47(3), 264(1979)
https://doi.org/10.1119/1.11855
5 Y. Q.Zhang, M. R.Belić, Z. K.Wu, H. B.Zheng, K. Q.Lu, Y. Y.Li, and Y. P.Zhang, Soliton pair generation in the interactions of Airy and nonlinear accelerating beams, Opt. Lett. 38(22), 4585(2013)
https://doi.org/10.1364/OL.38.004585
6 Z. K.Wu, P.Li, and Y. Z.Gu, Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media, Front. Phys. 12(5), 124203(2017)
https://doi.org/10.1007/s11467-016-0613-2
7 Y. Q.Zhang, M. R.Belić, H. B.Zheng, H. X.Chen, C. B.Li, Y. Y.Li, and Y. P.Zhang, Interactions of Airy beams, nonlinear accelerating beams, and induced solitons in Kerr and saturable nonlinear media, Opt. Express22(6), 7160(2014)
https://doi.org/10.1364/OE.22.007160
8 C. D.Chen, B.Chen, X.Peng, and D. M.Deng, Propagation of Airy–Gaussian beam in Kerr medium, J. Opt. 17(3), 035504(2015)
https://doi.org/10.1088/2040-8978/17/3/035504
9 Z. K.Wuand Y. Z.Gu, Laguerre–Gaussian, Hermite– Gaussian, Bessel–Gaussian, and Finite-Energy Airy beams carrying orbital angular momentum in strongly nonlocal nonlinear media, J. Phys. Soc. Jpn. 85(12), 124402(2016)
https://doi.org/10.7566/JPSJ.85.124402
10 B.Chen, C. D.Chen, X.Peng, Y. L.Peng, M. L.Zhou, D. M.Deng, and H.Guo, Evolution of the ring Airy Gaussian beams with a spiral phase in the Kerr medium, J. Opt. 18(5), 055504(2016)
https://doi.org/10.1088/2040-8978/18/5/055504
11 F.Zhuang, J.Shen, X.Du, and D.Zhao, Propagation and modulation of Airy beams through a four-level electromagnetic induced transparency atomic vapor, Opt. Lett. 37(15), 3054(2012)
https://doi.org/10.1364/OL.37.003054
12 C.Hangand G.Huang, Slow-light Airy wave packets and their active control via electromagnetically induced transparency, Phys. Rev. A88(1), 013825(2013)
https://doi.org/10.1103/PhysRevA.88.013825
13 F. J.Ye, L. Y.Zhang, F. R.Wang, Y. M.Yang, Y.Yu, J.Liu, D.Wei, P.Zhang, H.Gao, and F. L.Li, Propagation of Airy beams in a close-Ʌ electromagnetically induced transparency system, Opt. Commun. 345, 129(2015)
https://doi.org/10.1016/j.optcom.2015.02.001
14 Z. K.Wu, S.Wang, W. F.Hu, and Y. Z.Gu, Dynamics of finite energy airy beams carrying orbital angular momentum in multilevel atomic vapors, J. Phys. Soc. Jpn. 85(10), 104302(2016)
https://doi.org/10.7566/JPSJ.85.104302
15 S.Tanevand D.Pushkarov, Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibers and waveguides, Opt. Commun. 141(5–6), 322(1997)
https://doi.org/10.1016/S0030-4018(97)00230-7
16 Z. K.Wu, Y. Q.Zhang, C. Z.Yuan, F.Wen, H. B.Zheng, Y. P.Zhang, and M.Xiao, Cubic-quintic condensate solitons in four-wave mixing, Phys. Rev. A88(6), 063828(2013)
https://doi.org/10.1103/PhysRevA.88.063828
17 Z. K.Wu, K. G.Chang, Y.Hu, Y. Z.Zhang, Z. H.Jiang, and Y. P.Zhang, Modulation of four-wave mixing via photonic band gap, Front. Phys. 9(5), 665(2014)
https://doi.org/10.1007/s11467-014-0434-0
18 H.Michinel, M. J.Paz-Alonso, and V. M.Perez-Garcia, Turning light into a liquid via atomic coherence, Phys. Rev. Lett. 96(2), 023903(2006)
https://doi.org/10.1103/PhysRevLett.96.023903
19 D. E.Edmundsonand R. H.Enns, Particle-like nature of colliding three-dimensional optical solitons, Phys. Rev. A51(3), 2491(1995)
https://doi.org/10.1103/PhysRevA.51.2491
20 A. S.Desyatnikov, Y. S.Kivshar, and L.Torner, Optical vortices and vortex solitons, Prog. Opt. 47, 291(2005)
https://doi.org/10.1016/S0079-6638(05)47006-7
21 Y. P.Zhang,Z. G.Wang,Z. Q.Nie, C. B.Li, H. X.Chen, K. Q.Lu, and M.Xiao, Four-wave mixing dipole soliton in laser-induced atomic gratings, Phys. Rev. Lett. 106(9), 093904(2011)
https://doi.org/10.1103/PhysRevLett.106.093904
22 Y. P.Zhang, Z. Q.Nie, and M.Xiao, Coherent Control of Four-Wave Mixing, Heidelberg: Springer, 2010
23 S. E.Harris, Electromagnetically induced transparency, Phys. Today50(7), 36(1997)
https://doi.org/10.1063/1.881806
24 I.Chremmos, P.Zhang, J.Prakash, N. K.Efremidis, D. N.Christodoulides, and Z.Chen, Fourier-space generation of abruptly autofocusing beams and optical bottle beams, Opt. Lett. 36(18), 3675(2011)
https://doi.org/10.1364/OL.36.003675
25 P.Panagiotopoulos, D. G.Papazoglou, A.Couairon, and S.Tzortzakis, Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets, Nat. Commun. 4, 2622(2013)
https://doi.org/10.1038/ncomms3622
26 J.Sun, Z. C.Zuo, X.Mi, Z. H.Yu, Q.Jiang, Y. B.Wang, L. A.Wu, and P. M.Fu, Two-photon resonant four-wave mixing in a dressed atomic system, Phys. Rev. A70(5), 053820(2004)
https://doi.org/10.1103/PhysRevA.70.053820
27 H.Li, V. A.Sautenkov, Y. V.Rostovtsev, G. R.Welch, P. R.Hemmer, and M. O.Scully, Electromagnetically induced transparency controlled by a microwave field, Phys. Rev. A80(2), 023820(2009)
https://doi.org/10.1103/PhysRevA.80.023820
28 Z. Q.Nie, H. B.Zheng, P. Z.Li, Y. M.Yang, Y. P.Zhang, and M.Xiao, Interacting multiwave mixing in a five-level atomic system, Phys. Rev. A77(6), 063829(2008)
https://doi.org/10.1103/PhysRevA.77.063829
29 P. M.Fu, X.Mi, Z. H.Yu, Q.Jiang, Y. P.Zhang, and X. F.Li, Ultrafast modulation spectroscopy in a cascade three-level system, Phys. Rev. A52(6), 4867(1995)
https://doi.org/10.1103/PhysRevA.52.4867
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed