Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (1): 130305   https://doi.org/10.1007/s11467-017-0711-9
  本期目录
Multipartite quantum correlations among atoms in QED cavities
J. Batle1(), A. Farouk2, O. Tarawneh3, S. Abdalla4
1. Departament de Física, Universitat de les Illes Balears, 07122 Palma de Mallorca, Balearic Islands, Spain
2. Faculty of Computer and Information Sciences, Mansoura University, Egypt
3. Information Technology Department, Al-Zahra College for Women, P.O. Box 3365, Muscat, Oman
4. Department of Physics, Faculty of Science, King Abdulaziz University Jeddah, P.O. Box 80203. Jeddah 21589, Saudi Arabia
 全文: PDF(2351 KB)  
Abstract

We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in ndifferent and noninteracting cavities, all of which were initially prepared in a maximally correlated state of nqubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deathsand nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.

Key wordsquantum optics    cavity quantum electrodynamics    multipartite nonlocality
收稿日期: 2017-05-25      出版日期: 2017-09-22
Corresponding Author(s): J. Batle   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(1): 130305.
J. Batle, A. Farouk, O. Tarawneh, S. Abdalla. Multipartite quantum correlations among atoms in QED cavities. Front. Phys. , 2018, 13(1): 130305.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0711-9
https://academic.hep.com.cn/fop/CN/Y2018/V13/I1/130305
1 H.-K.Lo, S.Popescu, and T.Spiller, Introduction to Quantum Computation and Information, Singapore: World Scientific, 1998
https://doi.org/10.1142/3724
2 A.Galindoand M. A.Martín-Delgado, Information and computation: Classical and quantum aspects, Rev. Mod. Phys. 74(2), 347 (2002)
https://doi.org/10.1103/RevModPhys.74.347
3 M. A.Nielsenand I. L.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
4 C. P.Williamsand S. H.Clearwater, Explorations in Quantum Computing, New York: Springer, 1997
5 C. P.Williams, Quantum Computing and Quantum Communications, Berlin: Springer, 1998
6 C. H.Bennett, G.Brassard, C.Crepeau, R.Jozsa, A.Peres, and W. K.Wootters, Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895(1993)
https://doi.org/10.1103/PhysRevLett.70.1895
7 C. H.Bennettand S. J.Wiesner, Communication via one- and two-particle operators on Einstein–Podolsky– Rosen states, Phys. Rev. Lett. 69(20), 2881(1992)
https://doi.org/10.1103/PhysRevLett.69.2881
8 A.Ekertand R.Jozsa, Quantum computation and Shor’s factoring algorithm, Rev. Mod. Phys. 68(3), 733(1996)
https://doi.org/10.1103/RevModPhys.68.733
9 G. P.Berman, G. D.Doolen, R.Mainieri, and V. I.Tsifrinovich, Introduction to Quantum Computers, Singapore: World Scientific, 1998
https://doi.org/10.1142/3808
10 J.Batleand M.Casas, Nonlocality and entanglement in the XY-model, Phys. Rev. A82(6), 062101(2010)
https://doi.org/10.1103/PhysRevA.82.062101
11 J.Batleand M.Casas, Nonlocality and entanglement in qubit systems, J. Phys. A Math. Theor. 44(44), 445304(2011)
https://doi.org/10.1088/1751-8113/44/44/445304
12 N.Gisin, Bell’s inequality holds for all non-product states, Phys. Lett. A154(5–6), 201(1991)
https://doi.org/10.1016/0375-9601(91)90805-I
13 B.Schumacher, Bell’s theorem and monogamy, See:
14 J.Barrett, L.Hardy, and A.Kent, No signaling and quantum key distribution, Phys. Rev. Lett. 95(1), 010503(2005)
https://doi.org/10.1103/PhysRevLett.95.010503
15 A.Acín, N.Gisin, andL.Masanes, From Bell’s theorem to secure quantum key distribution, Phys. Rev. Lett. 97, 120405(2006)
https://doi.org/10.1103/PhysRevLett.97.120405
16 A.Acín, N.Brunner, N.Gisin, S.Massar, S.Pironio, and V.Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett. 98(23), 230501(2007)
https://doi.org/10.1103/PhysRevLett.98.230501
17 C.Brukner, M.Zukowski, and A.Zeilinger, Quantum communication complexity protocol with two entangled qutrits, Phys. Rev. Lett. 89(19), 197901(2002)
https://doi.org/10.1103/PhysRevLett.89.197901
18 P. R.Berman(Ed.), Cavity Quantum Electrodynamics, San Diego: Academic, 1994
19 H. J.Kimble, Strong interactions of single atoms and photons in cavity QED, Phys. Scr. T76(1), 127(1998)
https://doi.org/10.1238/Physica.Topical.076a00127
20 J. M.Raimond, M.Brune, and S.Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73(3), 565(2001)
https://doi.org/10.1103/RevModPhys.73.565
21 H.Mabuchiand A. C.Doherty, Cavity quantum electrodynamics: Coherence in context, Science298(5597), 1372(2002)
https://doi.org/10.1126/science.1078446
22 S.Harocheand J. M.Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford: Oxford University Press, 2006
https://doi.org/10.1093/acprof:oso/9780198509141.001.0001
23 E. T.Jaynesand F. W.Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE51(1), 89(1963)
https://doi.org/10.1109/PROC.1963.1664
24 A comprehensive review on the Jaynes–Cummings model is given in: B. W. Shore and P. L. Knight, The Jaynes–Cummings model, J. Mod. Opt. 40, 1195(1993)
25 A.Rauschenbeutel, G.Nogues, S.Osnaghi, P.Bertet, M.Brune, J. M.Raimond, and S.Haroche, Coherent operation of a tunable quantum phase gate in cavity QED, Phys. Rev. Lett. 83(24), 5166(1999)
https://doi.org/10.1103/PhysRevLett.83.5166
26 A. D.Boozer,A.Boca, R.Miller, T. E.Northup, and H. J.Kimble, Reversible state transfer between light and a single trapped atom, Phys. Rev. Lett. 98(19), 193601(2007)
https://doi.org/10.1103/PhysRevLett.98.193601
27 M.Koch, C.Sames, M.Balbach, H.Chibani, A.Kubanek, K.Murr, T.Wilk, and G.Rempe, Threephoton correlations in a strongly driven atom-cavity system, Phys. Rev. Lett. 107(2), 023601(2011)
https://doi.org/10.1103/PhysRevLett.107.023601
28 A.Reiserer, C.Nölleke, S.Ritter, and G.Rempe, Ground-state cooling of a single atom at the center of an optical cavity, Phys. Rev. Lett. 110(22), 223003(2013)
https://doi.org/10.1103/PhysRevLett.110.223003
29 C.Sames, H.Chibani,C.Hamsen, P.Altin, T.Wilk, and G.Rempe, Antiresonance phase shift in strongly coupled cavity QED, Phys. Rev. Lett. 112, 043601
https://doi.org/10.1103/PhysRevLett.112.043601
30 N.Kalb, A.Reiserer, S.Ritter, and G.Rempe, Heralded storage of a photonic quantum bit in a single atom, Phys. Rev. Lett. 114, 220501(2015)
https://doi.org/10.1103/PhysRevLett.114.220501
31 T.Pellizzari, S. A.Gardiner, J. I.Cirac, and P.Zoller, Decoherence, continuous observation, and quantum computing: A cavity QED model, Phys. Rev. Lett. 75, 3788(1995)
https://doi.org/10.1103/PhysRevLett.75.3788
32 S. J.van Enk, J. I.Cirac, and P.Zoller, Purifying twobit quantum gates and joint measurements in cavity QED, Phys. Rev. Lett. 79, 5178(1997)
https://doi.org/10.1103/PhysRevLett.79.5178
33 J.Pachosand H.Walther, Quantum computation with trapped ions in an optical cavity, Phys. Rev. Lett. 89, 187903(2002)
https://doi.org/10.1103/PhysRevLett.89.187903
34 L. M.Duan, A.Kuzmich, and H. J.Kimble, Cavity QED and quantum-information processing with “hot” trapped atoms, Phys. Rev. A67, 032305(2003)
https://doi.org/10.1103/PhysRevA.67.032305
35 X. X.Yi, X. H.Su, and L.You, Conditional quantum phase gate between two 3-state atoms, Phys. Rev. Lett. 90, 097902(2003)
https://doi.org/10.1103/PhysRevLett.90.097902
36 M.Yönaç, T.Yu, and J. H.Eberly, Sudden death of entanglement of two Jaynes–Cummings atoms, J. Phys. B: At. Mol.Opt. Phys. 39, 621(2006)
https://doi.org/10.1088/0953-4075/39/15/S09
37 I.Sainzand G.Björk, Entanglement invariant for the double Jaynes–Cummings model, Phys. Rev. A76, 042313(2007)
https://doi.org/10.1103/PhysRevA.76.042313
38 I. D. K.Brown, S.Stepney, A.Sudbery, and S. L.Braunstein, Searching for highly entangled multi-qubit states, J. Phys. A: Math. Gen. 38, 1119(2005)
https://doi.org/10.1088/0305-4470/38/5/013
39 J. F.Clauser, M. A.Horne, A.Shimony, and R. A.Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880(1969)
https://doi.org/10.1103/PhysRevLett.23.880
40 N. D.Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Phys. Rev. Lett. 65, 1838(1990)
https://doi.org/10.1103/PhysRevLett.65.1838
41 M.Ardehali, Bell inequalities with a magnitude of violation that grows exponentially with the number of particles, Phys. Rev. A46, 5375(1992)
https://doi.org/10.1103/PhysRevA.46.5375
42 A. V.Belinskiiand D. N.Klyshko, Interference of light and Bell’s theorem, Phys. Usp. 36(8), 653(1993)
https://doi.org/10.1070/PU1993v036n08ABEH002299
43 N.Gisinand H.Bechmann-Pasquinucci, Bell inequality, Bell states and maximally entangled states for n qubits, Phys. Lett. A246(1–2), 1 (1998)
https://doi.org/10.1016/S0375-9601(98)00516-7
44 V.Scarani, A.Acín,E.Schenck, and M.Aspelmeyer, Nonlocality of cluster states of qubits, Phys. Rev. A71, 042325(2005)
https://doi.org/10.1103/PhysRevA.71.042325
45 G.Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality, Phys. Rev. D35, 3066(1987)
https://doi.org/10.1103/PhysRevD.35.3066
46 K. M.O’Connorand W. K.Wootters, Entangled rings, Phys. Rev. A63, 052302(2001)
https://doi.org/10.1103/PhysRevA.63.052302
47 S.Kirkpatrick, C. D.Gelatt Jr, and M. P.Vecchi, Optimization by simulated annealing, Science220(4598), 671(1983)
https://doi.org/10.1126/science.220.4598.671
48 A.Tomadin and R.Fazio, Many-body phenomena in QED-cavity arrays, J. Opt. Soc. Am. B27, 130(2010)
https://doi.org/10.1364/JOSAB.27.00A130
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed