Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (1): 136101   https://doi.org/10.1007/s11467-017-0724-4
  本期目录
Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice
A. Parmentier1(), C. Andreani1,2, G. Romanelli1,3, J. J. Shephard4,5, C. G. Salzmann4, R. Senesi1,2()
1. Università degli Studi di Roma Tor Vergata, Dipartimento di Fisica e Centro NAST, Via della Ricerca Scientifica 1, 00133 Roma, Italy
2. CNR-IPCF Sezione di Messina, v.le F. Stagno D’Alcontres 37, 98158 Messina, Italy
3. ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK
4. University College London, Dept. of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK
5. Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
 全文: PDF(2654 KB)  
Abstract

The hydrogen mean force from experimental neutron Compton profiles is derived using deep inelastic neutron scattering on amorphous and polycrystalline ice. The formalism of mean force is extended to probe its sensitivity to anharmonicity in the hydrogen-nucleus effective potential. The shape of the mean force for amorphous and polycrystalline ice is primarily determined by the anisotropy of the underlying quasi-harmonic effective potential. The data from amorphous ice show an additional curvature reflecting the more pronounced anharmonicity of the effective potential with respect to that of ice Ih.

Key wordspotential of mean force    neutron Compton profile    nuclear quantum effects    path integral representation    anharmonicity
收稿日期: 2017-06-07      出版日期: 2017-12-08
Corresponding Author(s): A. Parmentier,R. Senesi   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(1): 136101.
A. Parmentier, C. Andreani, G. Romanelli, J. J. Shephard, C. G. Salzmann, R. Senesi. Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice. Front. Phys. , 2018, 13(1): 136101.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0724-4
https://academic.hep.com.cn/fop/CN/Y2018/V13/I1/136101
1 M. Ceriotti, W. Fang, P. G. Kusalik, R. H. McKenzie, A. Michaelides, M. A. Morales, and T. E. Markland, Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges, Chem. Rev. 116(5), 7259 (2016)
https://doi.org/10.1021/acs.chemrev.5b00674
2 J. M. F. Gunn, C. Andreani, and J. Mayers, A new approach to impulsive neutron scattering, J. Phys. C Solid State Phys. 19(36), L835 (1986)
https://doi.org/10.1088/0022-3719/19/36/001
3 C. Andreani, D. Colognesi, J. Mayers, G. F. Reiter, and R. Senesi, Measurement of momentum distribution of light atoms and molecules in condensed matter systems using inelastic neutron scattering, Adv. Phys. 54(5), 377 (2005)
https://doi.org/10.1080/00018730500403136
4 G. B. West, Electron scattering from atoms, nuclei and nucleons, Phys. Rev. C 18, 263 (1975)
https://doi.org/10.1016/0370-1573(75)90035-6
5 G. Reiter and R. Silver, Measurement of interionic potentials in solids using deep-inelastic neutron scattering, Phys. Rev. Lett. 54(10), 1047 (1985)
https://doi.org/10.1103/PhysRevLett.54.1047
6 G. I. Watson, Neutron Compton scattering, J. Phys.: Condens. Matter 8(33), 5955 (1996)
https://doi.org/10.1088/0953-8984/8/33/005
7 C. Andreani, M. Krzystyniak, G. Romanelli, R. Senesi, and F. Fernandez-Alonso, Electron-volt neutron spectroscopy: beyond fundamental systems, Adv. Phys. 66(1), 1 (2017)
https://doi.org/10.1080/00018732.2017.1317963
8 J. A. Morrone and R. Car, Nuclear quantum effects in water, Phys. Rev. Lett. 101(1), 017801 (2008)
https://doi.org/10.1103/PhysRevLett.101.017801
9 R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55(22), 2471 (1985)D. Marx and M. Parrinello, Ab initio path integral molecular dynamics, Z. Phys. B 95(2), 143 (1994)
https://doi.org/10.1103/PhysRevLett.55.2471
10 D. Marx and M. Parrinello, Ab initio path integral molecular dynamics: Basic ideas, J. Chem. Phys. 104(11), 4077 (1996)
https://doi.org/10.1007/BF01312185
11 L. Lin, J. A. Morrone, R. Car, and M. Parrinello, Displaced path integral formulation for the momentum distribution of quantum particles, Phys. Rev. Lett. 105(11), 110602 (2010)
https://doi.org/10.1063/1.471221
12 B. Cheng, J. Behler, and M. Ceriotti, Nuclear quantum effects in water at the triple point: Using theory as a link between experiments, J. Phys. Chem. Lett. 7(12), 2210 (2016)
https://doi.org/10.1103/PhysRevLett.105.110602
13 C. Andreani, G. Romanelli, and R. Senesi, A Combined INS and DINS study of proton quantum dynamics of ice and water across the triple point and in the supercritical phase, Chem. Phys. 427, 106 (2013)
https://doi.org/10.1021/acs.jpclett.6b00729
14 R. Senesi, G. Romanelli, M. A. Adams, and C. Andreani, Temperature dependence of the zero point kinetic energy in ice and water above room temperature, Chem. Phys. 427, 111 (2013)
https://doi.org/10.1016/j.chemphys.2013.07.009
15 D. Flammini, A. Pietropaolo, R. Senesi, C. Andreani, F. McBride, A. Hodgson, M. A. Adams, L. Lin, and R. Car, Spherical momentum distribution of the protons in hexagonal ice from modeling of inelastic neutron scattering data, J. Chem. Phys. 136(2), 024504 (2012)
https://doi.org/10.1016/j.chemphys.2013.09.010
16 C. Pantalei, A. Pietropaolo, R. Senesi, S. Imberti, C. Andreani, J. Mayers, C. Burnham, and G. Reiter, Proton momentum distribution of liquid water from room temperature to the supercritical phase, Phys. Rev. Lett. 100(17), 177801 (2008)
https://doi.org/10.1063/1.3675838
17 C. Andreani, G. Romanelli, and R. Senesi, Direct measurements of quantum kinetic energy tensor in stable and metastable water near the triple point: An experimental benchmark, J. Phys. Chem. Lett. 7(12), 2216 (2016)
https://doi.org/10.1103/PhysRevLett.100.177801
18 R. P. Feynman, Forces in molecules, Phys. Rev. 56(4), 340 (1939)
https://doi.org/10.1021/acs.jpclett.6b00926
19 R. Senesi, Direct kinetic energy extraction from neutron compton profiles, Nucl. Instrum. Methods Phys. Res. 661(1), 70 (2012)
https://doi.org/10.1103/PhysRev.56.340
20 V. F. Sears, Scaling and final-state interactions in deepinelastic neutron scattering, Phys. Rev. B 30(1), 44 (1984)
https://doi.org/10.1016/j.nima.2011.09.039
21 J. Mayers, User Guide to VESUVIO Data Analysis Programs for Powders and Liquids, Technical Report RALTR-2011-003, STFC (2011)
https://doi.org/10.1103/PhysRevB.30.44
22 R. Senesi, C. Andreani, Z. Bowden, D. Colognesi, E. Degiorgi, A. L. Fielding, J. Mayers, M. Nardone, J. Norris, M. Praitano, N. J. Rhodes, W. G. Stirling, J. Tomkinson, and C. Uden, VESUVIO: A novel instrument for performing spectroscopic studies in condensed matter with eV neutrons at the ISIS facility, Physica B276–278, 200 (2000)
23 A. Pietropaolo and R. Senesi, Electronvolt neutron spectrometers, Phys. Rep. 508(3), 45 (2011)
24 V. A. Harmandaris, N. P. Adhikari, N. F. A. van der Vegt, and K. Kremer, Hierarchical modeling of polystyrene: From atomistic to coarse-grained simulations, Macromolecules 39(19), 6708 (2006)
https://doi.org/10.1021/ma0606399
25 D. Trzesniak, A. P. E. Kunz, and W. F. van Gunsteren, A comparison of methods to compute the potential of mean force, Chem Phys Chem 8(1), 162 (2007)
https://doi.org/10.1002/cphc.200600527
26 D. M. Ceperley, Path integrals in the theory of condensed helium, Rev. Mod. Phys. 67(2), 279 (1995)
https://doi.org/10.1103/RevModPhys.67.279
27 S. K. Kauffmann and J. Rafelski, Analytic study of a sequence of path integral approximations for simple quantum systems at low temperature, Z. Phys. C 24(2), 157 (1984)
https://doi.org/10.1007/BF01571720
28 T. W. Whitfield and J. E. Straub, Uncertainty of path integral averages at low temperature, J. Chem. Phys. 115(15), 6834 (2001)
https://doi.org/10.1063/1.1403691
29 J. A. Morrone, V. Srinivasan, D. Sebastiani, and R. Car, Proton momentum distribution in water: An open path integral molecular dynamics study, J. Chem. Phys. 126(23), 234504 (2007)
https://doi.org/10.1063/1.2745291
30 Y. Marechal, The Hydrogen Bond and the Water Molecule- The Physics and Chemistry of Water, Aqueous and Bio-Media, Elsevier Science, 2006
31 P. M. Morse, Diatomic molecules according to the wave mechanics (II): Vibrational levels, Phys. Rev. 34(1), 57 (1929)
https://doi.org/10.1103/PhysRev.34.57
32 J. P. Dahl and M. Springborg, The Morse oscillator in position space, momentum space, and phase space, J. Chem. Phys. 88(7), 4535 (1988)
https://doi.org/10.1063/1.453761
33 M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover Publications Inc., 1970
34 L. Lin, J. A. Morrone, R. Car, and M. Parrinello, Momentum distribution, vibrational dynamics and the potential of mean force in ice, Phys. Rev. B 83(22), 220302 (2011)
https://doi.org/10.1103/PhysRevB.83.220302
35 T. Iijima, Anharmonicity of the OH...O hydrogen bond in liquid water, Chem. Phys. Lett. 217(5–6), 503 (1994)
https://doi.org/10.1016/0009-2614(93)E1428-J
36 R. H. McKenzie, C. Bekker, B. Athokpam, and S. G. Ramesh, Effect of quantum nuclear motion on hydrogen bonding, J. Chem. Phys. 140(17), 174508 (2014)
https://doi.org/10.1063/1.4873352
37 D. Hadzi and S. Bratos, in: The Hydrogen Bond: Recent Developments in Theory and Experiments, Vol. II, Structure and Spectroscopy, Eds. P. Schuster, G. Zundel, and C. Sandorfy, Amsterdam: North Holland Publishing Company, 1976
38 M. Barbatti and M. A. C. Nascimento, Vibrational analysis of small Hn+ hydrogen clusters, J. Chem. Phys. 119(11), 5444 (2003)
https://doi.org/10.1063/1.1599350
39 X. Zhang, S. Chen, and J. Li, Hydrogen-bond potential for ice VIII-X phase transition, Sci. Rep. 6(1), 37161 (2016)
https://doi.org/10.1038/srep37161
40 H. J. Bakker, H.K. Nienhuys, G. Gallot, N. Lascoux, G. M. Gale, J.C. Leicknam, and S. Bratos, Transient absorption of vibrationally excited water,J. Chem. Phys. 116(6), 2592 (2002)
https://doi.org/10.1063/1.1432687
41 A. Parmentier, J. J. Shephard, G. Romanelli, R. Senesi, C. G. Salzmann, and C. Andreani, Evolution of hydrogen dynamics in amorphous ice with density, J. Chem. Phys. Lett. 6(11), 2038 (2015)
https://doi.org/10.1021/acs.jpclett.5b00711
42 J. L. Finney, A. Hallbrucker, I. Kohl, A. K. Soper, and D. T. Bowron, Structures of high and low density amorphous ice by neutron diffraction, Phys. Rev. Lett. 88(22), 225503 (2002)
https://doi.org/10.1103/PhysRevLett.88.225503
43 J. L. Finney, D. T. Bowron, A. K. Soper, T. Loerting, E. Mayer, and A. Hallbrucker, Structure of a new dense amorphous ice, Phys. Rev. Lett. 89(20), 205503 (2002)
https://doi.org/10.1103/PhysRevLett.89.205503
44 J. J. Shephard, S. Ling, G. C. Sosso, A. Michaelides, B. Slater, and C. G. Salzmann, Is high-density amorphous ice simply a ‘derailed’ state along the ice I to ice IV pathway? J. Phys. Phys. Lett. 8, 1645 (2017)
https://doi.org/10.1021/acs.jpclett.7b00492
45 M. Guthrie, C. A. Tulk, C. J. Benmore, and D. D. Klug, A structural study of very high-density amorphous ice, Chem. Phys. Lett. 397(4–6), 335 (2004)
https://doi.org/10.1016/j.cplett.2004.07.116
46 A. Shalit, F. Perakis, and P. Hamm, Communication: Disorder-suppressed vibrational relaxation in vapordeposited high-density amorphous ice,J. Chem. Phys. 140(15), 151102 (2014)
https://doi.org/10.1063/1.4871476
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed