Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (1): 136102   https://doi.org/10.1007/s11467-017-0725-3
  本期目录
Core-softened potentials, multiple liquid–liquid critical points, and density anomaly regions: An exact solution
Eduardo O. Rizzatti1, Marco Aurélio A. Barbosa2(), Marcia C. Barbosa1()
1. Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre-RS, Brazil
2. Programa de Pós-Graduacão em Ciência de Materiais, Universidade de Brasília, Planaltina-DF, Brazil
 全文: PDF(586 KB)  
Abstract

The pressure versus temperature phase diagram of a system of particles interacting through a multiscale shoulder-like potential is exactly computed in one dimension. The N-shoulder potential exhibits N density anomaly regions in the phase diagram if the length scales can be connected by a convex curve. The result is analyzed in terms of the convexity of the Gibbs free energy.

Key wordsdensity anomalies regions
出版日期: 2017-10-30
Corresponding Author(s): Marco Aurélio A. Barbosa,Marcia C. Barbosa   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(1): 136102.
Eduardo O. Rizzatti, Marco Aurélio A. Barbosa, Marcia C. Barbosa. Core-softened potentials, multiple liquid–liquid critical points, and density anomaly regions: An exact solution. Front. Phys. , 2018, 13(1): 136102.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0725-3
https://academic.hep.com.cn/fop/CN/Y2018/V13/I1/136102
1 P. C.Hemmer and G.Stell, Fluids with Several Phase Transitions, Phys. Rev. Lett.24(23), 1284 (1970)
https://doi.org/10.1103/PhysRevLett.24.1284
2 P. G.Debenedetti, V. S.Raghavan, and S. S.Borick, Spinodal curve of some supercooled liquids, J. Chem. Phys. 95(11), 4540(1991)
https://doi.org/10.1021/j100164a066
3 S.Sastry, P. G.Debenedetti, F.Sciortino, and H. E.Stanley, Singularity-free interpretation of the thermodynamics of supercooled water, Phys. Rev. E53(6), 6144(1996)
https://doi.org/10.1103/PhysRevE.53.6144
4 C. J.Robertsand P. G.Debenedetti, Polyamorphism and density anomalies in network-forming fluids: Zeroth- and first-order approximations, J. Chem. Phys. 105(2), 658(1996)
https://doi.org/10.1063/1.471922
5 E. A.Jagla, Phase behavior of a system of particles with core collapse, Phys. Rev. E58(2), 1478(1998)
https://doi.org/10.1103/PhysRevE.58.1478
6 G.Franzese, G.Malescio, A.Skibinsky, S. V.Buldyrev, and H. E.Stanley, Generic mechanism for generating a liquid–liquid phase transition, Nature409(6821), 692(2001)
https://doi.org/10.1038/35055514
7 N. B.Wildingand J. E.Magee, Phase behavior and thermodynamic anomalies of core-softened fluids, Phys. Rev. E66(3), 031509(2002)
https://doi.org/10.1103/PhysRevE.66.031509
8 P.Camp, Structure and phase behavior of a twodimensional system with core-softened and long-range repulsive interactions, Phys. Rev. E68(6), 061506(2003)
https://doi.org/10.1103/PhysRevE.68.061506
9 M.Prettiand C.Buzano, Thermodynamic anomalies in a lattice model of water, J. Chem. Phys. 121(23), 11856(2004)
https://doi.org/10.1063/1.1817924
10 A.Balladaresand M. C.Barbosa, Density anomaly in core-softened lattice gas, J. Phys.: Condens. Matter16(49), 8811(2004)
https://doi.org/10.1088/0953-8984/16/49/001
11 A. B.Oliveiraand M. C.Barbosa, Density anomaly in a competing interactions lattice gas model, J. Phys.: Condens. Matter17(3), 399(2005)
https://doi.org/10.1088/0953-8984/17/3/001
12 Yu. D.Fomin, E. N.Tsiok, and V. N.Ryzhov, Complex phase behavior of the system of particles with smooth potential with repulsive shoulder and attractive well, J. Chem. Phys. 134(4), 044523(2011)
https://doi.org/10.1063/1.3530790
13 G. S.Kell, Precise representation of volume properties of water at one atmosphere, J. Chem. Eng. Data12(1), 66(1967)
https://doi.org/10.1021/je60032a018
14 P. H.Poole, F.Sciortino, U.Essmann, and H. E.Stanley, Phase behaviour of metastable water, Nature360(6402), 324(1992)
https://doi.org/10.1038/360324a0
15 J. C.Palmer,F.Martelli, Y.Liu, R.Car, A. Z.Panagiotopoulos, and P. G.Debenedetti, Metastable liquid– liquid transition in a molecular model of water, Nature510(7505), 385(2014)
https://doi.org/10.1038/nature13405
16 A.Faraone, L.Liu, C. Y.Mou, C. W.Yen, and S. H.Chen, Fragile-to-strong liquid transition in deeply supercooled confined water, J. Chem. Phys. 121(22), 10843(2004)
https://doi.org/10.1063/1.1832595
17 J. A.Sellberg, C.Huang, T. A.McQueen, N. D.Loh, H.Laksmono, et al., Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature510, 381(2014)
https://doi.org/10.1038/nature13266
18 H.Takahashi, Mathematical Physics in One Dimension, Academic Press, 1966, pp 25–3419.
https://doi.org/10.1016/B978-0-12-448750-5.50006-2
19 G.Gallavotti, Statistical Mechanics: A Short Treatise, Berlin: Springer, 1999, pp 162–164
https://doi.org/10.1007/978-3-662-03952-6
20 A.Barros de Oliveira, P. A.Netz, T.Colla, and M. C.Barbosa, Thermodynamic and dynamic anomalies for a three-dimensional isotropic core-softened potential, J. Chem. Phys. 124(8), 084505(2006)
https://doi.org/10.1063/1.2168458
21 A.Barros de Oliveira, P. A.Netz, T.Colla, and M. C.Barbosa, Thermodynamic and dynamic anomalies for a three-dimensional isotropic core-softened potential, J. Chem. Phys. 124(8), 084505(2006)
https://doi.org/10.1063/1.2168458
22 E.Barraz,Salcedo, and M. C.Barbosa, Thermodynamic, dynamic, and structural anomalies for shoulderlike potentials, J. Chem. Phys. 131(9), 094504(2009)
https://doi.org/10.1063/1.3213615
23 M. A. A.Barbosa, E.Salcedo, and M. C.Barbosa, Multiple liquid-liquid critical points and density anomaly in core-softened potentials, Phys. Rev. E87(3), 032303(2013)
https://doi.org/10.1103/PhysRevE.87.032303
24 M. A. A.Barbosa, F. V.Barbosa, and F. A.Oliveira, Thermodynamic and dynamic anomalies in a onedimensional lattice model of liquid water, J. Chem. Phys. 134(2), 024511(2011)
https://doi.org/10.1063/1.3522772
25 F. B. V.da Silva, F. A.Oliveira, and M. A. A.Barbosa, Residual entropy and waterlike anomalies in the repulsive one dimensional lattice gas, J. Chem. Phys. 142(14), 144506(2015)
https://doi.org/10.1063/1.4916905
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed