Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (1): 138301   https://doi.org/10.1007/s11467-017-0731-5
  本期目录
Dynamical properties of water in living cells
Irina Piazza1,2(), Antonio Cupane1, Emmanuel L. Barbier3,4, Claire Rome3,4, Nora Collomb3,4, Jacques Ollivier2, Miguel A. Gonzalez2, Francesca Natali5,2
1. Dept. of Physics and Chemistry, University of Palermo, Viale delle Scienze Ed. 18, 90122 Palermo, Italy
2. Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
3. Institut des Neurosciences, Université Grenoble-Alpes, 38044 Grenoble, France
4. Inserm, U1216, Grenoble, France
5. CNR-IOM, OGG, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France
 全文: PDF(4828 KB)  
Abstract

With the aim of studying the effect of water dynamics on the properties of biological systems, in this paper, we present a quasi-elastic neutron scattering study on three different types of living cells, differing both in their morphological and tumor properties. The measured scattering signal, which essentially originates from hydrogen atoms present in the investigated systems, has been analyzed using a global fitting strategy using an optimized theoretical model that considers various classes of hydrogen atoms and allows disentangling diffusive and rotational motions. The approach has been carefully validated by checking the reliability of the calculation of parameters and their 99% confidence intervals. We demonstrate that quasi-elastic neutron scattering is a suitable experimental technique to characterize the dynamics of intracellular water in the angstrom/picosecond space/time scale and to investigate the effect of water dynamics on cellular biodiversity.

Key wordsquasi-elastic neutron scattering    intracellular water    water structure and dynamics
收稿日期: 2017-04-10      出版日期: 2017-12-08
Corresponding Author(s): Irina Piazza,Francesca Natali   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(1): 138301.
Irina Piazza, Antonio Cupane, Emmanuel L. Barbier, Claire Rome, Nora Collomb, Jacques Ollivier, Miguel A. Gonzalez, Francesca Natali. Dynamical properties of water in living cells. Front. Phys. , 2018, 13(1): 138301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0731-5
https://academic.hep.com.cn/fop/CN/Y2018/V13/I1/138301
1 P. Ball, Water as an active constituent in cell biology, Chem. Rev. 108(1), 74 (2008)
https://doi.org/10.1021/cr068037a
2 G. Schirò, F. Natali, and A. Cupane, Physical origin of anharmonic dynamics in proteins: New insights from resolution-dependent neutron scattering on homomeric polypeptides, Phys. Rev. Lett. 109(12), 128102 (2012)
https://doi.org/10.1103/PhysRevLett.109.128102
3 G. Schirò, M. Fomina, and A. Cupane, Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water, J. Chem. Phys. 139(12), 121102 (2013)
https://doi.org/10.1063/1.4822250
4 G. Zaccai, The effect of water on protein dynamics, Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1448), 1269 (2004)
https://doi.org/10.1098/rstb.2004.1503
5 G. Zaccai, Hydration shells with a pinch of salt, Biopolymers 99(4), 233 (2013)
https://doi.org/10.1002/bip.22154
6 E. Trantham, H. Rorschach, J. Clegg, C. Hazlewood, R. Nicklow, and N. Wakabayashi, Diffusive properties of water in Artemia cysts as determined from quasi-elastic neutron scattering spectra, Biophys. J. 45(5), 927 (1984)
https://doi.org/10.1016/S0006-3495(84)84239-3
7 M. Tehei, B. Franzetti, K. Wood, F. Gabel, E. Fabiani, M. Jasnin, M. Zamponi, D. Oesterhelt, G. Zaccai, M. Ginzburg, and B.Z. Ginzburg, Neutron scattering reveals extremely slow cell water in a Dead Sea organism, Proc. Natl. Acad. Sci. USA 104(3), 766 (2007)
https://doi.org/10.1073/pnas.0601639104
8 M. Jasnin, A. Stadler, M. Tehei, and G. Zaccai, Specific cellular water dynamics observed in vivo by neutron scattering and NMR, Phys. Chem. Chem. Phys. 12(35), 10154 (2010)
https://doi.org/10.1039/c0cp01048k
9 A. M. Stadler, J. P. Embs, I. Digel, G. M. Artmann, T. Unruh, G. Buldt, and G. Zaccai, Cytoplasmic water and hydration layer dynamics in human red blood cells, J. Am. Chem. Soc. 130(50), 16852 (2008)
https://doi.org/10.1021/ja807691j
10 E. Persson and B. Halle, Cell water dynamics on multiple time scales, Proc. Natl. Acad. Sci. USA 105(17), 6266 (2008)
https://doi.org/10.1073/pnas.0709585105
11 S. Moreno, A. Klar, and P. Nurse, Molecular genetic analysis of fission yeast Schizosaccharomyces pombe, Methods Enzymol. 194, 795 (1991)
https://doi.org/10.1016/0076-6879(91)94059-L
12 M. Jasnin, M. Moulin, M. Haertlein, G. Zaccai, and M. Tehei, Down to atomic-scale intracellular water dynamics, EMBO Rep. 9(6), 543 (2008)
https://doi.org/10.1038/embor.2008.50
13 D. Richard, M. Ferrand, and G. Kearley, Analysis and visualisation of neutron-scattering data, Journal of Neutron Research 4(1), 33 (1996)
https://doi.org/10.1080/10238169608200065
14 M. Bee, Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry. Biology and Materials Science, Adam Hilger, Bristol, 1988
15 V. Sears, Theory of cold neutron scattering by homonuclear diatomic liquids (i): Free rotation, Can. J. Phys. 44(6), 1279 (1966)
https://doi.org/10.1139/p66-108
16 J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and A. J. Dianoux, Experimental determination of the nature of diffusive motions of water molecules at low temperatures, Phys. Rev. A 31(3), 1913 (1985)
https://doi.org/10.1103/PhysRevA.31.1913
17 W. T. Vetterling, Numerical Recipes Example Book (C++): The Art of Scientific Computing, Cambridge University Press, 2002
18 F. Natali, Y. Gerelli, C. Stelletta, and J. Peters, Anomalous proton dynamics of water molecules in neural tissue as seen by quasi-elastic neutron scattering: Impact on medical imaging techniques, in: AIP Conference Proceedings, Vol. 1518 (AIP, 2013), pp 551–557
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed