Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (3): 130504   https://doi.org/10.1007/s11467-018-0748-4
  本期目录
Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions
Di Yuan1(), Jun-Long Tian1(), Fang Lin1, Dong-Wei Ma1, Jing Zhang1, Hai-Tao Cui1, Yi Xiao2
1. School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China
2. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
 全文: PDF(1184 KB)  
Abstract

In this study we investigate the collective behavior of the generalized Kuramoto model with an external pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscillators follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrarians oscillating around π periodically. In addition, we present the parameter space of the oscillating π state and traveling wave state of the model.

Key wordsgeneralized Kuramoto model    pinning force    conformists    contrarians    oscillating π state
收稿日期: 2017-09-05      出版日期: 2018-03-07
Corresponding Author(s): Di Yuan,Jun-Long Tian   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(3): 130504.
Di Yuan, Jun-Long Tian, Fang Lin, Dong-Wei Ma, Jing Zhang, Hai-Tao Cui, Yi Xiao. Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions. Front. Phys. , 2018, 13(3): 130504.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0748-4
https://academic.hep.com.cn/fop/CN/Y2018/V13/I3/130504
1 Y. Kuramoto, International symposium on mathematical problems in theoretical physics, in: H. Araki (Editor), Lecture Notes in Physics 39 (420–422), New York: Springer 1975
2 S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys. 80(4), 1275 (2008)
https://doi.org/10.1103/RevModPhys.80.1275
3 C. von Cube, S. Slama, D. Kruse, C. Zimmermann, P. W. Courteille, G. R. M. Robb, N. Piovella, and R. Bonifacio, Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing, Phys. Rev. Lett. 93(8), 083601 (2004)
https://doi.org/10.1103/PhysRevLett.93.083601
4 J. Javaloyes, M. Perrin, and A. Politi, Collective atomic recoil laser as a synchronization transition, Phys. Rev. E 78(1), 011108 (2008)
https://doi.org/10.1103/PhysRevE.78.011108
5 M. Wickramasinghe and I. Z. Kiss, Phase synchronization of three locally coupled chaotic electrochemical oscillators: Enhanced phase diffusion and identification of indirect coupling, Phys. Rev. E 83(1), 016210 (2011)
https://doi.org/10.1103/PhysRevE.83.016210
6 I. Z. Kiss, W. Wang, and J. L. Hudson, Populations of coupled electrochemical oscillators, Chaos 12(1), 252 (2002)
https://doi.org/10.1063/1.1426382
7 J. W. Swift, S. H. Strogatz, and K. Wiesenfeld, Averaging of globally coupled oscillators, Physica D 55(3–4), 239 (1992)
https://doi.org/10.1016/0167-2789(92)90057-T
8 K. Wiesenfeld, P. Colet, and S. H. Strogatz, Synchronization transitions in a disordered Josephson series array, Phys. Rev. Lett. 76(3), 404 (1996)
https://doi.org/10.1103/PhysRevLett.76.404
9 K. Wiesenfeld, P. Colet, and S. H. Strogatz, Frequency locking in Josephson arrays: Connection with the Kuramoto model, Phys. Rev. E 57(2), 1563 (1998)
https://doi.org/10.1103/PhysRevE.57.1563
10 G. Grüner, The dynamics of charge-density waves, Rev. Mod. Phys. 60(4), 1129 (1988)
https://doi.org/10.1103/RevModPhys.60.1129
11 C. M. Marcus, S. H. Strogatz, and R. M. Westervelt, Delayed switching in a phase-slip model of charge-densitywave transport, Phys. Rev. B 40(8), 5588 (1989)
https://doi.org/10.1103/PhysRevB.40.5588
12 J. Buck and E. Buck, Synchronous fireflies, Sci. Am. 234(5), 74 (1976)
https://doi.org/10.1038/scientificamerican0576-74
13 C. S. Peskin, Mathematical Aspects of Heart Physiology, Courant Institute of Mathematical Science Publication, 268–278, New York: Springer, 1975
14 I. Z. Kiss, et al., Emerging coherence in a population of chemical oscillators, Science 296(5573), 1676 (2002)
https://doi.org/10.1126/science.1070757
15 G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B 61(4), 485 (2008)
https://doi.org/10.1140/epjb/e2008-00098-8
16 M. Rohden, A. Sorge, M. Timme, and D. Witthaut, Selforganized synchronization in decentralized power grids, Phys. Rev. Lett. 109(6), 064101 (2012)
https://doi.org/10.1103/PhysRevLett.109.064101
17 F. Dorfler, M. Chertkov, and F. Bullo, Synchronization in complex oscillator networks and smart grids, Proc. Natl. Acad. Sci. USA 110(6), 2005 (2013)
https://doi.org/10.1073/pnas.1212134110
18 Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A. L. Barabási, Physics of the rhythmic applause, Phys. Rev. E 61(6), 6987 (2000)
https://doi.org/10.1103/PhysRevE.61.6987
19 J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
https://doi.org/10.1103/RevModPhys.77.137
20 A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16(1), 15 (1967)
https://doi.org/10.1016/0022-5193(67)90051-3
21 H. Daido, Population dynamics of randomly interacting self-oscillators, Prog. Theor. Phys. 77(3), 622 (1987)
https://doi.org/10.1143/PTP.77.622
22 C. Börgers, S. Epstein, and N. J. Kopell, Background gamma rhythmicity and attention in cortical local circuits: A computational study, Proc. Natl. Acad. Sci. USA 102(19), 7002 (2005)
https://doi.org/10.1073/pnas.0502366102
23 C. Börgers and N. Kopell, Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity, Neural Comput. 15(3), 509 (2003)
https://doi.org/10.1162/089976603321192059
24 H. Hong and S. H. Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators, Phys. Rev. Lett. 106(5), 054102 (2011)
https://doi.org/10.1103/PhysRevLett.106.054102
25 H. Hong and S. H. Strogatz, Conformists and contrarians in a Kuramoto model with identical natural frequencies, Phys. Rev. E 84(4), 046202 (2011)
https://doi.org/10.1103/PhysRevE.84.046202
26 C. Freitas, E. Macau, and A. Pikovsky, Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model, Chaos 25(4), 043119 (2015)
https://doi.org/10.1063/1.4919246
27 H. Sakaguchi, Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys. 79(1), 39 (1988)
https://doi.org/10.1143/PTP.79.39
28 H. Kori and A. S. Mikhailov, Strong effects of network architecture in the entrainment of coupled oscillator systems, Phys. Rev. E 74(6), 066115 (2006)
https://doi.org/10.1103/PhysRevE.74.066115
29 T. M. Jr Antonsen, R. T. Faghih, M. Girvan, E. Ott, and J. Platig, External periodic driving of large systems of globally coupled phase oscillators, Chaos 18(3), 037112 (2008)
https://doi.org/10.1063/1.2952447
30 E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos 18(3), 037113 (2008)
https://doi.org/10.1063/1.2930766
31 S. H. Park and S. Kim, Noise-induced phase transitions in globally coupled active rotators, Phys. Rev. E 53(4), 3425 (1996)
https://doi.org/10.1103/PhysRevE.53.3425
32 S. Shinomoto and Y. Kuramoto, Phase transitions in active rotator systems, Prog. Theor. Phys. 75(5), 1105 (1986)
https://doi.org/10.1143/PTP.75.1105
33 H. Hong, Periodic synchronization and chimera in conformist and contrarian oscillators, Phys. Rev. E 89(6), 062924 (2014)
https://doi.org/10.1103/PhysRevE.89.062924
34 D. Hansel, G. Mato, and C. Meunier, Clustering and slow switching in globally coupled phase oscillators, Phys. Rev. E 48(5), 3470 (1993)
https://doi.org/10.1103/PhysRevE.48.3470
35 O. Burylko, Y. Kazanovich, and R. Borisyuk, Bifurcation study of phase oscillator systems with attractive and repulsive interaction, Phys. Rev. E 90(2), 022911 (2014)
https://doi.org/10.1103/PhysRevE.90.022911
36 C. Bick, M. Timme, D. Paulikat, D. Rathlev, and P. Ashwin, Chaos in symmetric phase oscillator networks, Phys. Rev. Lett. 107(24), 244101 (2011)
https://doi.org/10.1103/PhysRevLett.107.244101
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed