Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (3): 135101   https://doi.org/10.1007/s11467-018-0749-3
  本期目录
Discrete ellipsoidal statistical BGK model and Burnett equations
Yu-Dong Zhang1,2, Ai-Guo Xu2,3(), Guang-Cai Zhang2, Zhi-Hua Chen1, Pei Wang2
1. Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China
2. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
3. Center for Applied Physics and Technology, MOE Key Center for High Energy Density Physics Simulations, College of Engineering, Peking University, Beijing 100871, China
 全文: PDF(14176 KB)  
Abstract

A new discrete Boltzmann model, the discrete ellipsoidal statistical Bhatnagar–Gross–Krook (ESBGK) model, is proposed to simulate nonequilibrium compressible flows. Compared with the original discrete BGK model, the discrete ES-BGK has a flexible Prandtl number. For the discrete ES-BGK model in the Burnett level, two kinds of discrete velocity model are introduced and the relations between nonequilibrium quantities and the viscous stress and heat flux in the Burnett level are established. The model is verified via four benchmark tests. In addition, a new idea is introduced to recover the actual distribution function through the macroscopic quantities and their space derivatives. The recovery scheme works not only for discrete Boltzmann simulation but also for hydrodynamic ones, for example, those based on the Navier–Stokes or the Burnett equations.

Key wordsdiscrete Boltzmann model    ellipsoidal statistical BGK    Burnett equations    nonequilibrium quantities    actual distribution function
收稿日期: 2017-11-08      出版日期: 2018-03-07
Corresponding Author(s): Ai-Guo Xu   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(3): 135101.
Yu-Dong Zhang, Ai-Guo Xu, Guang-Cai Zhang, Zhi-Hua Chen, Pei Wang. Discrete ellipsoidal statistical BGK model and Burnett equations. Front. Phys. , 2018, 13(3): 135101.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0749-3
https://academic.hep.com.cn/fop/CN/Y2018/V13/I3/135101
1 H. Tsien, Superaerodynamics, Mechanics of Rarefied Gases, Collected Works of H. S. Tsien, 13(12), 406 (2012)
https://doi.org/10.1016/B978-0-12-398277-3.50020-8
2 S. Ching, Rarefied Gas Dynamics, Berlin Heidelberg: Springer, 2005
3 W. Chen, W. Zhao, Z. Jiang, et al., A review of moment equations for rarefied gas dynamics, Physics of Gases 1(5), 9 (2016)
4 C. Ho and Y. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech. 30(1), 579 (1998)
https://doi.org/10.1146/annurev.fluid.30.1.579
5 G. Karniadakis and A. Beşkök, Microflows: Fundamentals and Simulation, Springer, 2005
6 Y. Zheng and H. Struchtrup, Burnett equations for the ellipsoidal statistical BGK model, Contin. Mech. Thermodyn. 16(1–2), 97 (2004)
https://doi.org/10.1007/s00161-003-0143-3
7 L. Wu, C. White, T. J. Scanlon, J. M. Reese, and Y. Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, J. Comput. Phys. 250(250), 27 (2013)
https://doi.org/10.1016/j.jcp.2013.05.003
8 G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford: Clarendon Press, 2003
9 K. Xu and J. C. Huang, A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys. 229(20), 7747 (2010)
https://doi.org/10.1016/j.jcp.2010.06.032
10 C. Liu, K. Xu, Q. Sun, et al., A unified gas-kinetic scheme for continuum and rarefied flows (IV), Commun. Comput. Phys. 14(5), 1147 (2014)
11 L. Yang, C. Shu, J. Wu, and Y. Wang, Numerical simulation of flows from free molecular regime to continuum regime by a DVM with streaming and collision processes, J. Comput. Phys. 306, 291 (2016)
https://doi.org/10.1016/j.jcp.2015.11.043
12 Z. Guo, K. Xu, and R. Wang, Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case, Phys. Rev. E 88(3), 033305 (2013)
https://doi.org/10.1103/PhysRevE.88.033305
13 Z. Guo, R. Wang, and K. Xu, Discrete unified gas kinetic scheme for all Knudsen number flows (II): Thermal compressible case,Phys. Rev. E 91(3), 033313 (2015)
https://doi.org/10.1103/PhysRevE.91.033313
14 Y. Zhang, R. Qin, and D. Emerson, Lattice Boltzmann simulation of rarefied gas flows in microchannels, Phys. Rev. E 71(4), 047702 (2005)
https://doi.org/10.1103/PhysRevE.71.047702
15 Y. Zhang, R. Qin, Y. Sun, R. W. Barber, and D. R. Emerson, Gas flow in microchannels–a lattice Boltzmann method approach, J. Stat. Phys. 121(1–2), 257 (2005)
https://doi.org/10.1007/s10955-005-8416-9
16 X. Shan, X. F. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier– Stokes equation,J. Fluid Mech. 550(-1), 413 (2006)
17 J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718, 347 (2013)
https://doi.org/10.1017/jfm.2012.616
18 M. Watari, Is the lattice Boltzmann method applicable to rarefied gas flows? Comprehensive evaluation of the higher-order models, J. Fluids Eng. 138(1), 011202 (2015)
https://doi.org/10.1115/1.4031000
19 A. Xu, G. Zhang, and Y. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Physica Sinica 64(18), 184701 (2015)
20 A. Xu, G. Zhang, and Y. Gan, Progress in studies on discrete Boltzmann modeling of phase separation process, Mech. Eng. 38(4), 361 (2016)
21 A. Xu, G. Zhang, Y. Ying, et al., Complex fields in heterogeneous materials under shock: Modeling, simulation and analysis, Sci. China: Phys. Mech. & Astron. 59(5), 650501 (2016)
https://doi.org/10.1007/s11433-016-5801-0
22 Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)
https://doi.org/10.1039/C5SM01125F
23 H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows, Phys. Rev. E 94(2), 023106 (2016)
https://doi.org/10.1103/PhysRevE.94.023106
24 F. Chen, A. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh– Taylor Instability, Front. Phys. 11(6), 114703 (2016)
https://doi.org/10.1007/s11467-016-0603-4
25 C. Lin, A. Xu, G. Zhang, and Y. Li, Doubledistribution- function discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)
https://doi.org/10.1016/j.combustflame.2015.11.010
26 Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)
https://doi.org/10.1016/j.combustflame.2016.04.003
27 C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice Boltzmann modeling of compressible flows, Phys. Rev. E 89(1), 013307 (2014)
https://doi.org/10.1103/PhysRevE.89.013307
28 H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Molecular dynamics simulations of microscopic structure of ultrastrong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)
https://doi.org/10.1007/s11467-016-0590-5
29 H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. T. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95(2), 023201 (2017)
https://doi.org/10.1103/PhysRevE.95.023201
30 H. Liu, W. Kang, H. Duan, P. Zhang, and X. T. He, Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid, Sci. China: Phys. Mech. & Astron. 47(7), 070003 (2017)
https://doi.org/10.1360/SSPMA2016-00405
31 W. Kang, U. Landman, and A. Glezer, Thermal bending of nanojets: Molecular dynamics simulations of an asymmetrically heated nozzle, Appl. Phys. Lett. 93(12), 123116 (2008)
https://doi.org/10.1063/1.2988282
32 P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases (I): Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94(3), 511 (1954)
https://doi.org/10.1103/PhysRev.94.511
33 Holway, New statistical models for kinetic theory: Methods of construction, Phys. Fluids 9(9), 1658 (1966)
https://doi.org/10.1063/1.1761920
34 E. M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dyn. 3(5), 95 (1972)
https://doi.org/10.1007/BF01029546
35 V. A. Rykov, A model kinetic equation for a gas with rotational degrees of freedom, Fluid Dyn. 10(6), 959 (1976)
https://doi.org/10.1007/BF01023275
36 P. Andries, P. Le Tallec, J. P. Perlat, and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. BFluids 19(6), 813 (2000)
https://doi.org/10.1016/S0997-7546(00)01103-1
37 Y. Zheng and H. Struchtrup, Burnett equations for the ellipsoidal statistical BGK model, Contin. Mech. Thermodyn. 16(1–2), 97 (2004)
https://doi.org/10.1007/s00161-003-0143-3
38 Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, EPL 103(2), 24003 (2013)
https://doi.org/10.1209/0295-5075/103/24003
39 H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, Berlin Heidelberg: Springer, 2005
https://doi.org/10.1007/3-540-32386-4
40 M. Watari and M. Tsutahara, Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E 67(3), 036306 (2003)
https://doi.org/10.1103/PhysRevE.67.036306
41 K. Xu, A gas-kinetic BGK Scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys. 171(1), 289 (2001)
https://doi.org/10.1006/jcph.2001.6790
42 Z. Guo, C. Zheng, and B. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids 14(6), 2007 (2002)
https://doi.org/10.1063/1.1471914
43 P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54(1), 115 (1984)
https://doi.org/10.1016/0021-9991(84)90142-6
44 G. Pham-Van-Diep, D. Erwin, and E. P. Muntz, Nonequilibrium molecular motion in a hypersonic shock wave, Science 245(4918), 624 (1989)
https://doi.org/10.1126/science.245.4918.624
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed