Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (3): 138501   https://doi.org/10.1007/s11467-018-0750-x
  本期目录
First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions
Qiang Wang1,2, Jian-Wei Li2, Bin Wang2(), Yi-Hang Nie1,3()
1. Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China
2. Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
3. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
 全文: PDF(2630 KB)  
Abstract

Two-dimensional (2D) GeP3 has recently been theoretically proposed as a new low-dimensional material [Nano Lett. 17(3), 1833 (2017)]. In this manuscript, we propose a first-principles calculation to investigate the quantum transport properties of several GeP3 nanoribbon-based atomic tunneling junctions. Numerical results indicate that monolayer GeP3 nanoribbons show semiconducting behavior, whereas trilayer GeP3 nanoribbons express metallic behavior owing to the strong interaction between each of the layers. This behavior is in accordance with that proposed in two-dimensional GeP3 layers. The transmission coefficient T(E) of tunneling junctions is sensitive to the connecting formation between the central monolayer GeP3 nanoribbon and the trilayer GeP3 nanoribbon at both ends. The T(E) value of the bottom-connecting tunneling junction is considerably larger than those of the middle-connecting and top-connecting ones. With increases in gate voltage, the conductances increase for the bottom-connecting and middle-connecting tunneling junctions, but decrease for the top-connecting tunneling junctions. In addition, the conductance decreases exponentially with respect to the length of the central monolayer GeP3 nanoribbon for all the tunneling junctions. IV curves show approximately linear behavior for the bottom-connecting and middle-connecting structures, but exhibit negative differential resistance for the top-connecting structures. The physics of each phenomenon is analyzed in detail.

Key wordsquantum transport    GeP3 tunneling junctions    NEGF-DFT
收稿日期: 2017-11-08      出版日期: 2018-03-07
Corresponding Author(s): Bin Wang,Yi-Hang Nie   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(3): 138501.
Qiang Wang, Jian-Wei Li, Bin Wang, Yi-Hang Nie. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions. Front. Phys. , 2018, 13(3): 138501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0750-x
https://academic.hep.com.cn/fop/CN/Y2018/V13/I3/138501
1 Y. Jing, Y. Ma, Y. Li, and T. Heine, GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement, Nano Lett. 17(3), 1833 (2017)
https://doi.org/10.1021/acs.nanolett.6b05143
2 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
3 S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
https://doi.org/10.1021/nn400280c
4 F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, and V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science 347(6217), 1246501 (2015)
https://doi.org/10.1126/science.1246501
5 S. D. Sarma and S. Adam, E. H. wang and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83(407), 407 (2011)
https://doi.org/10.1103/RevModPhys.83.407
6 A. H. N. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(109), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
7 A. Lherbier, X. Blase, Y. M. Niquet, F. Triozon, and S. Roche, Charge transport in chemically doped 2D graphene, Phys. Rev. Lett. 101(3), 036808 (2008)
https://doi.org/10.1103/PhysRevLett.101.036808
8 B. Z. Rameshti and A. G. Moghaddam, Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene, Phys. Rev. B 91(15), 155407 (2015)
https://doi.org/10.1103/PhysRevB.91.155407
9 Y. Xing, Q. Sun, and J. Wang, Nernst and Seebeck effects in a graphene nanoribbon, Phys. Rev. B 80(23), 235411 (2009)
https://doi.org/10.1103/PhysRevB.80.235411
10 B. Wang, J. Li, F. Xu, Y. Wei, J. Wang, and H. Guo, Transient dynamics of magnetic Co-graphene systems, Nanoscale 7(22), 10030 (2015)
https://doi.org/10.1039/C5NR01525A
11 A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Takamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108(24), 245501 (2012)
https://doi.org/10.1103/PhysRevLett.108.245501
12 P. Vogt, P. D. Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. L. Lay, Silicene: compelling experimental evidence for Graphene like two-dimensional silicon, Phys. Rev. Lett. 108(15), 155501 (2012)
https://doi.org/10.1103/PhysRevLett.108.155501
13 A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity, Phys. Rev. B 78(13) (2008)
14 D. Xiao, G. B. Liu, W. Feng, X. Xu and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108, 196802 (2012)
https://doi.org/10.1103/PhysRevLett.108.196802
15 M. Ramakrishna, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao, MoS2 and WS2 analogues of graphene, Angew. Chem. Int. Ed. 49(24), 4059 (2010)
https://doi.org/10.1002/anie.201000009
16 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
17 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
18 L. Zhang, L. Wan, Y. Yu, B. Wang, F. Xu, Y. Wei, and Y. Zhao, Modulation of electronic structure of armchair MoS2 nanoribbon, J. Phys. Chem. C 119(38), 22164 (2015)
https://doi.org/10.1021/acs.jpcc.5b04747
19 F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics, Nat. Commun. 5, 4458 (2008)
20 L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
https://doi.org/10.1038/nnano.2014.35
21 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
22 C. Y. Zhi, Y. Bando, C. C. Tang, H. Kuwahara, and D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv. Mater. 21(28), 2889 (2009)
https://doi.org/10.1002/adma.200900323
23 J. H. Warner, M. H. Rümmeli, A. Bachmatiuk, and B. Büchner, Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation, ACS Nano 4(3), 1299 (2010)
https://doi.org/10.1021/nn901648q
24 A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, and C. N. R. Rao, Graphene analogues of BN: Novel synthesis and properties, ACS Nano 4(3), 1539 (2010)
https://doi.org/10.1021/nn9018762
25 P. Miró, M. Audiffred, and T. Heine, An atlas of twodimensional materials, Chem. Soc. Rev. 43(18), 6537 (2014)
https://doi.org/10.1039/C4CS00102H
26 C. L. Haynes and R. P. Van Duyne, Nanosphere lithography: A versatile nanofabrication tool for studies of size dependent nanoparticle optics, J. Phys. Chem. B 105(24), 5599 (2001)
https://doi.org/10.1021/jp010657m
27 J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russel, Photonic band cap guidance in optical fibers, Science 282(5393), 1476 (1998)
https://doi.org/10.1126/science.282.5393.1476
28 A. V. Krasheninnikov, and K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys. 107(7), 071301 (2010)
https://doi.org/10.1063/1.3318261
29 Z. H. Qiao, S. A. Yang, B. Wang, Y. G. Yao, and Q. Niu, Spin-polarized and valley helical edge modes in graphene nanoribbons, Phys. Rev. B 84(3), 035431 (2011)
https://doi.org/10.1103/PhysRevB.84.035431
30 B. Wang and J. Wang, First-principles investigation of transport properties through longitudinal unzipped carbon nanotubes, Phys. Rev. B 81(4), 045425 (2010)
https://doi.org/10.1103/PhysRevB.81.045425
31 W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Optical properties of two interacting gold nanoparticles, Opt. Commun. 220(1–3), 137 (2003)
https://doi.org/10.1016/S0030-4018(03)01357-9
32 D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
https://doi.org/10.1103/PhysRevLett.108.196802
33 W. Qi, H. Zhao, Y. Wu, H. Zeng, T. Tao, C. Chen, C. Kuang, S. Zhou, and Y. Huang, Facile synthesis of layer structured GeP3/C with stable chemical bonding for enhanced lithium-ion storage, Sci. Rep. 7, 43582 (2017)
https://doi.org/10.1038/srep43582
34 C. Zhang, Y. Jiao, T. He, F. Ma, L. Kou, T. Liao, S. Bottle, and A. Du, Two-dimensional GeP3 as a high capacity electrode material for Li-ion batteries, Phys. Chem. Chem. Phys. 19(38), 25886 (2017)
https://doi.org/10.1039/C7CP04758D
35 W. X. Lai, C. Zhang, and Z. S. Ma, Single molecular shuttle junction: Shot noise and decoherence, Front. Phys. 10(1), 108501 (2015)
https://doi.org/10.1007/s11467-014-0443-z
36 Z. Y. Ning, J. S. Qiao, W. Ji, and H. Guo, Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions, Front. Phys. 9(6), 780 (2014)
https://doi.org/10.1007/s11467-014-0453-x
37 Y. Cai, G. Zhang, and Y. W. Zhang, Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons, J. Am. Chem. Soc. 136(17), 6269 (2014)
https://doi.org/10.1021/ja4109787
38 Y. Zhang, X. H. Yan, Y. D. Guo, and Y. Xiao, Magnetization distribution and spin transport of graphene/h- BN/graphene nanoribbon-based magnetic tunnel junction, Phys. Lett. A 381(35), 2949 (2017)
https://doi.org/10.1016/j.physleta.2017.07.011
39 J. W. Li, B. Wang, Y. J. Yu, Y. D. Wei, Z. Z. Yu, and Y. Wang, Spin-resolved quantum transport in graphenebased nanojunctions, Front. Phys. 12(4) (2016)
40 G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
41 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
42 J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100(13), 136406 (2008)
https://doi.org/10.1103/PhysRevLett.100.136406
43 H. J. Monkhorst and J. D. Pack, Special points for Brillouin zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
44 J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
https://doi.org/10.1103/PhysRevB.63.245407
45 D. Hamann, M. Schlüter, and C. Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
https://doi.org/10.1103/PhysRevLett.43.1494
46 P. Ordejón, E. Artacho, and J. M. Soler, Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B 53(16), R10441 (1996)
https://doi.org/10.1103/PhysRevB.53.R10441
47 J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 14(11), 2745 (2002)
https://doi.org/10.1088/0953-8984/14/11/302
48 E. J. Meijer and M. Sprik, A density-functional study of the intermolecular interactions of benzene, J. Chem. Phys. 105(19), 8684 (1996)
https://doi.org/10.1063/1.472649
49 S. Goedecker and C. Umrigar, Critical assessment of the self-interaction corrected local density functional method and its algorithmic implementation, Phys. Rev. A 55(3), 1765 (1997)
https://doi.org/10.1103/PhysRevA.55.1765
50 G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Phys. Rev. B 76(7), 073103 (2007)
https://doi.org/10.1103/PhysRevB.76.073103
51 B. G. Wang, J. Wang, and H. Guo, Nonlinear spin polarized transport through a ferromagnetic nonmagnetic ferromagnetic junction, J. Phys. Soc. Jpn. 70(9), 2645 (2001)
https://doi.org/10.1143/JPSJ.70.2645
52 M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31(10), 6207 (1985)
https://doi.org/10.1103/PhysRevB.31.6207
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed