Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (3): 138105   https://doi.org/10.1007/s11467-018-0752-8
  本期目录
Recent progress on borophene: Growth and structures
Longjuan Kong1,2, Kehui Wu1,2,3, Lan Chen1,2()
1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2. School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
3. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
 全文: PDF(6553 KB)  
Abstract

Boron is the neighbor of carbon on the periodic table and exhibits unusual physical characteristics derived from electron-deficient, highly delocalized covalent bonds. As the nearest neighbor of carbon, boron is in many ways similar to carbon, such as having a short covalent radius and the flexibility to adopt sp2 hybridization. Hence, boron could be capable of forming monolayer structural analogues of graphene. Although many theoretical papers have reported finding two-dimensional allotropes of boron, there had been no experimental evidence for such atom-thin boron nanostructures until 2016. Recently, the successful synthesis of single-layer boron (referred to as borophene) on the Ag(111) substrate opens the era of boron nanostructures. In this brief review, we will discuss the progress that has been made on borophene in terms of synthetic techniques, characterizations and the atomic models. However, borophene is just in infancy; more efforts are expected to be made in future on the controlled synthesis of quality samples and tailoring its physical properties.

Key wordsborophene    molecular beam epitaxy    scanning tunneling microscopy    atomic model    density functional theory
收稿日期: 2018-01-20      出版日期: 2018-04-23
Corresponding Author(s): Lan Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(3): 138105.
Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures. Front. Phys. , 2018, 13(3): 138105.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0752-8
https://academic.hep.com.cn/fop/CN/Y2018/V13/I3/138105
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 D. Akinwande, L. Tao, Q. Yu, X. Lou, P. Peng, and D. Kuzum, Large-area graphene electrodes: Using CVD to facilitate applications in commercial touchscreens, flex- ible nanoelectronics, and neural interfaces, IEEE Nanotechnol. Mag. 9(3), 6 (2015)
https://doi.org/10.1109/MNANO.2015.2441105
3 A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, S. Roche, et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7(11), 4598 (2015)
https://doi.org/10.1039/C4NR01600A
4 G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol. 9(10), 768 (2014)
https://doi.org/10.1038/nnano.2014.207
5 A. L. Ivanovskii, Graphene-based and graphene-like materials, Russ. Chem. Rev. 81(7), 571 (2012)
https://doi.org/10.1070/RC2012v081n07ABEH004302
6 S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)
https://doi.org/10.1002/smll.201402041
7 J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)
https://doi.org/10.1016/j.pmatsci.2016.04.001
8 B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12(7), 3507 (2012)
https://doi.org/10.1021/nl301047g
9 P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: compelling experimental evidence for graphene-like two-dimensional silicon, Phys. Rev. Lett. 108(15), 155501 (2012)
https://doi.org/10.1103/PhysRevLett.108.155501
10 A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108(24), 245501 (2012)
https://doi.org/10.1103/PhysRevLett.108.245501
11 J. Gou, Q. Zhong, S. Sheng, W. Li, P. Cheng, H. Li, L. Chen, and, K. Wu, Strained monolayer germanene with 1×1 lattice on Sb(111), 2D Materials 3, 045005 (2016)
12 L. Li, S. Lu, J. Pan, Z. Qin, Y. Wang, Y. Wang, G. y. Cao, S. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)
https://doi.org/10.1002/adma.201400909
13 S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
https://doi.org/10.1103/PhysRevLett.102.236804
14 J. Gou, L. Kong, H. Li, Q. Zhong, W. Li, P. Cheng, L. Chen, and K. Wu, Strain-induced band engineering in monolayer stanene on Sb(111), Phys. Rev. Mater. 1(5), 054004 (2017)
https://doi.org/10.1103/PhysRevMaterials.1.054004
15 F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Guan, C.-H. Liu, D. Qian, S.-C. Zhang, and J.-F. Jia, Epitaxial growth of two-dimensional stanene, Nature Mater. 14, 1020 (2015)
https://doi.org/10.1038/nmat4384
16 Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in thin films, Phys. Rev. Lett. 111(13), 136804 (2013)
https://doi.org/10.1103/PhysRevLett.111.136804
17 C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B 84(19), 195430 (2011)
https://doi.org/10.1103/PhysRevB.84.195430
18 A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017)
https://doi.org/10.1038/nmat4802
19 K. Takeda and K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50(20), 14916 (1994)
https://doi.org/10.1103/PhysRevB.50.14916
20 K. H. Wu, A review of the growth and structures of silicene on Ag(111), Chin. Phys. B 24(8), 086802 (2015)
https://doi.org/10.1088/1674-1056/24/8/086802
21 H. J. Zhai, B. Kiran, J. Li, and L. S. Wang, Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity, Nat. Mater. 2(12), 827 (2003)
https://doi.org/10.1038/nmat1012
22 A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev, Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality, Acc. Chem. Res. 47(4), 1349 (2014)
https://doi.org/10.1021/ar400310g
23 W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li, and L. S. Wang, The B35 cluster with a double-hexagonal vacancy: A new and more flexible structural motif for borophene, J. Am. Chem. Soc. 136(35), 12257 (2014)
https://doi.org/10.1021/ja507235s
24 Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li, and L. S. Wang, Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets, Nat. Commun. 5, 3113 (2014)
https://doi.org/10.1038/ncomms4113
25 W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev, A concentric planar doubly-aromatic B19 cluster, Nat. Chem. 2(3), 202 (2010)
https://doi.org/10.1038/nchem.534
26 H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang, Observation of an all-boron fullerene, Nat. Chem. 6(8), 727 (2014)
https://doi.org/10.1038/nchem.1999
27 J. Lv, Y. Wang, L. Zhu, and Y. Ma, B38: An all-boron fullerene analogue, Nanoscale 6(20), 11692 (2014)
https://doi.org/10.1039/C4NR01846J
28 H. Li, N. Shao, B. Shang, L. F. Yuan, J. Yang, and X. C. Zeng, Icosahedral B12-containing core–shell structures of B80, Chem. Commun. 46(22), 3878 (2010)
https://doi.org/10.1039/c002954h
29 N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, B80 fullerene: An ab initio prediction of geometry, stability, and electronic structure,Phys. Rev. Lett. 98(16), 166804 (2007)
https://doi.org/10.1103/PhysRevLett.98.166804
30 J. Zhao, L. Wang, F. Li, and Z. Chen, B80 and other medium-sized boron clusters: Core-shell structures, not hollow cages, J. Phys. Chem. A 114(37), 9969 (2010)
https://doi.org/10.1021/jp1018873
31 D. Ciuparu, R. F. Klie, Y. Zhu, and L. Pfefferle, Synthesis of pure boron single-wall nanotubes, J. Phys. Chem. B 108(13), 3967 (2004)
https://doi.org/10.1021/jp049301b
32 J. Tian, Z. Xu, C. Shen, F. Liu, N. Xu, and H. J. Gao, One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications, Nanoscale 2(8), 1375 (2010)
https://doi.org/10.1039/c0nr00051e
33 A. K. Singh, A. Sadrzadeh, and B. I. Yakobson, Probing properties of boron α-tubes by ab initiocalculations, Nano Lett. 8(5), 1314 (2008)
https://doi.org/10.1021/nl073295o
34 T. Ogitsu, E. Schwegler, and G. Galli, β-rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration, Chem. Rev. 113(5), 3425 (2013)
https://doi.org/10.1021/cr300356t
35 J. K. Olson and A. I. Boldyrev, Electronic transmutation: Boron acquiring an extra electron becomes ‘carbon’, Chem. Phys. Lett. 523, 83 (2012)
https://doi.org/10.1016/j.cplett.2011.11.079
36 S. Saxena, Introduction to Boron Nanostructures, Handbook of Boron Nanostructures, 1 (2016)
37 I. Boustani, Systematic ab initio investigation of bare boron clusters: mDetermination of the geometryand electronic structures of Bn(n= 2–14), Phys. Rev. B 55(24), 16426 (1997)
https://doi.org/10.1103/PhysRevB.55.16426
38 I. Boustani, New quasi-planar surfaces of bare boron, Surf. Sci. 370(2–3), 355 (1997)
39 K. C. Lau and R. Pandey, Stability and electronic properties of atomistically-engineered 2D boron sheets, J. Phys. Chem. C 111(7), 2906 (2007)
https://doi.org/10.1021/jp066719w
40 K. C. Lau, R. Pati, R. Pandey, and A. C. Pineda, Firstprinciples study of the stability and electronic properties of sheets and nanotubes of elemental boron, Chem. Phys. Lett. 418(4–6), 549 (2006)
https://doi.org/10.1016/j.cplett.2005.10.104
41 I. Cabria, M. López, and J. Alonso, Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets, Nanotechnology 17(3), 778 (2006)
https://doi.org/10.1088/0957-4484/17/3/027
42 H. Tang and S. Ismail-Beigi, Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures, Phys. Rev. B 80(13), 134113 (2009)
https://doi.org/10.1103/PhysRevB.80.134113
43 H. Tang and S. Ismail-Beigi, Novel precursors for boron nanotubes: The competition of two-center and threecenter bonding in boron sheets, Phys. Rev. Lett. 99(11), 115501 (2007)
https://doi.org/10.1103/PhysRevLett.99.115501
44 H. Tang and S. Ismail-Beigi, First-principles study of boron sheets and nanotubes, Phys. Rev. B 82(11), 115412 (2010)
https://doi.org/10.1103/PhysRevB.82.115412
45 X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano 6(8), 7443 (2012)
https://doi.org/10.1021/nn302696v
46 E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson, Polymorphism of two-dimensional boron, Nano Lett. 12(5), 2441 (2012)
https://doi.org/10.1021/nl3004754
47 Y. Liu, E. S. Penev, and B. I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations, Angew. Chem. Int. Ed. 52(11), 3156 (2013)
https://doi.org/10.1002/anie.201207972
48 H. Liu, J. Gao, and J. Zhao, From boron cluster to twodimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation, Sci. Rep. 3(1), 3238 (2013)
https://doi.org/10.1038/srep03238
49 L. Zhang, Q. Yan, S. Du, G. Su, and H. J. Gao, Boron sheet adsorbed on metal surfaces: Structures and electronic properties, J. Phys. Chem. C 116(34), 18202 (2012)
https://doi.org/10.1021/jp303616d
50 B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)
https://doi.org/10.1038/nchem.2491
51 A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)
https://doi.org/10.1126/science.aad1080
52 Q. Zhong, J. Zhang, P. Cheng, B. Feng, W. Li, S. Sheng, H. Li, S. Meng, L. Chen, and K. Wu, Metastable phases of 2D boron sheets on Ag(111), J. Phys. Condens. Matter 29(9), 095002 (2017)
https://doi.org/10.1088/1361-648X/aa5165
53 Z. Zhang, A. J. Mannix, Z. Hu, B. Kiraly, N. P. Guisinger, M. C. Hersam, and B. I. Yakobson, Substrate-induced nanoscale undulations of borophene on silver, Nano Lett. 16(10), 6622 (2016)
https://doi.org/10.1021/acs.nanolett.6b03349
54 Q. Zhong, L. Kong, J. Gou, W. Li, S. Sheng, S. Yang, P. Cheng, H. Li, K. Wu, and L. Chen, Synthesis of borophene nanoribbons on Ag(110) surface, arXiv: 1704.05603 (2017)
55 Z. Zhang, Y. Yang, G. Gao, and B. I. Yakobson, Two- Dimensional Boron Monolayers Mediated by Metal Substrates, Angew. Chem. Int. Ed. 54(44), 13022 (2015)
https://doi.org/10.1002/anie.201505425
56 A. J. Mannix, B. Kiraly, M. C. Hersam, and N. P. Guisinger, Synthesis and chemistry of elemental 2D materials, Nature Rev. Chem. 1, 0014 (2017)
57 Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22), 6746 (2017)
https://doi.org/10.1039/C7CS00261K
58 B. Feng, O. Sugino, R. Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, F. Komori, T. C. Chiang, S. Meng, and I. Matsuda, Dirac fermions in borophene, Phys. Rev. Lett. 118(9), 096401 (2017)
https://doi.org/10.1103/PhysRevLett.118.096401
59 B. Feng, J. Zhang, S. Ito, M. Arita, C. Cheng, L. Chen, K. Wu, F. Komori, O. Sugino, and K. Miyamoto, Discovery of 2D anisotropic Dirac cones, Adv. Mater. 30(2),1704025 (2018)
https://doi.org/10.1002/adma.201704025
60 B. Feng, J. Zhang, R. Y. Liu, T. Iimori, C. Lian, H. Li, L. Chen, K. Wu, S. Meng, F. Komori, and I. Matsuda, Direct evidence of metallic bands in a monolayer boron sheet, Phys. Rev. B 94(4), 041408 (2016)
https://doi.org/10.1103/PhysRevB.94.041408
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed