Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (3): 138110   https://doi.org/10.1007/s11467-018-0753-7
  本期目录
Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy
Jun-Chi Wu1, Xu Peng1, Yu-Qiao Guo1, Hao-Dong Zhou1, Ji-Yin Zhao1, Ke-Qin Ruan1, Wang-Sheng Chu2, Changzheng Wu1()
1. Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230026, China
2. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(22798 KB)  
Abstract

Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.

Key words2D ferromagnetic material    topochemical conversion    magnetocrystalline anisotropy
收稿日期: 2018-01-24      出版日期: 2018-04-26
Corresponding Author(s): Changzheng Wu   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(3): 138110.
Jun-Chi Wu, Xu Peng, Yu-Qiao Guo, Hao-Dong Zhou, Ji-Yin Zhao, Ke-Qin Ruan, Wang-Sheng Chu, Changzheng Wu. Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy. Front. Phys. , 2018, 13(3): 138110.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0753-7
https://academic.hep.com.cn/fop/CN/Y2018/V13/I3/138110
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronicsand optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
3 P. Ajayan, P. Kim, and K. Banerjee, Two-dimensional van der Waals materials, Phys. Today 69(9), 38 (2016)
https://doi.org/10.1063/PT.3.3297
4 S. Rudin and D. C. Mattis, Absence of ferromagnetism in the two-dimensional Hubbard model, Phys. Lett. A 110(5), 273 (1985)
https://doi.org/10.1016/0375-9601(85)90097-0
5 K. Xu, X. Li, P. Chen, D. Zhou, C. Wu, Y. Guo, L. Zhang, J. Zhao, X. Wu, and Y. Xie, Hydrogen dangling bonds induce ferromagnetism in two-dimensional metalfree graphitic-C3N4 nanosheets, Chem. Sci. 6(1), 283 (2015)
https://doi.org/10.1039/C4SC02576H
6 X. Zhu, Y. Guo, H. Cheng, J. Dai, X. An, J. Zhao, K. Tian, S. Wei, X. Cheng Zeng, C. Wu, and Y. Xie, Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption, Nat. Commun. 7, 11210 (2016)
https://doi.org/10.1038/ncomms11210
7 L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, and S. Wei, Vacancy-induced ferromagnetism of MoS2 nanosheets, J. Am. Chem. Soc. 137(7), 2622 (2015)
https://doi.org/10.1021/ja5120908
8 B. Li, T. Xing, M. Zhong, L. Huang, N. Lei, J. Zhang, J. Li, and Z. Wei, A two-dimensional Fe-doped SnS2 magnetic semiconductor, Nat. Commun. 8(1), 1958 (2017)
https://doi.org/10.1038/s41467-017-02077-z
9 B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. Mcguire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
10 C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
11 J. L. Miller, Ancient clues help quantify modern methane, Phys. Today 70, 16 (2017)
https://doi.org/10.1063/PT.3.3753
12 H. T. Jeng and G. Y. Guo, First-principles investigations of the electronic structure and magnetocrystalline anisotropy in strained magnetite Fe3O4, Phys. Rev. B 65(9), 094429 (2002)
https://doi.org/10.1103/PhysRevB.65.094429
13 K. Dwight and N. Menyuk, Magnetic properties of and the canted spin problem, Phys. Rev. 119(5), 1470 (1960)
https://doi.org/10.1103/PhysRev.119.1470
14 T. Jeng and G. Y. Guo, First-principles investigations of the electronic structure and magnetocrystalline anisotropy in strained magnetite Fe3O4, Phys. Rev. B 65(9), 094429 (2002)
https://doi.org/10.1103/PhysRevB.65.094429
15 X. Peng, Y. Guo, Q. Yin, J. Wu, J. Zhao, C. Wang, S. Tao, W. Chu, C. Wu, and Y. Xie, Double-exchange effect in two-dimensional MnO2 nanomaterials, J. Am. Chem. Soc. 139(14), 5242 (2017)
https://doi.org/10.1021/jacs.7b01903
16 W. Cheng, J. He, T. Yao, Z. Sun, Y. Jiang, Q. Liu, S. Jiang, F. Hu, Z. Xie, B. He, W. Yan, and S. Wei, Half-unit-cell α-Fe2O3 semiconductor nanosheets with intrinsic and robust ferromagnetism, J. Am. Chem. Soc. 136(29), 10393 (2014)
https://doi.org/10.1021/ja504088n
17 Y. Sun, Q. Liu, S. Gao, H. Cheng, F. Lei, Z. Sun, Y. Jiang, H. Su, S. Wei, and Y. Xie, Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation, Nat. Commun. 4, 2899 (2013)
https://doi.org/10.1038/ncomms3899
18 L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, and Y. Xie, High-performance flexible electrochromic device based on facile semiconductorto-metal transition realized by WO3·2H2O ultrathin nanosheets, Sci. Rep. 3(1), 1936 (2013)
https://doi.org/10.1038/srep01936
19 G. Srinivasan and M. S. Seehra, Magnetic properties of Mn3O4 and a solution of the canted-spin problem, Phys. Rev. B 28(1), 1 (1983)
https://doi.org/10.1103/PhysRevB.28.1
20 L. Ren, S. Wu, M. Yang, W. Zhou, and S. Li, Magnetic properties of Mn3O4 film under compressive stress grown on MgAl2O4 (001) by molecular beam epitaxy, J. Appl. Phys. 114(5), 053907 (2013)
https://doi.org/10.1063/1.4817283
21 Y. Yafet and C. Kittel, Antiferromagnetic arrangements in ferrites, Phys. Rev. 87(2), 290 (1952)
https://doi.org/10.1103/PhysRev.87.290
22 L. Ren, M. Yang, W. Zhou, S. Wu, and S. Li, Influence of stress and defect on magnetic properties of Mn3O4 films grown on MgAl2O4 (001) by molecular beam epitaxy, J. Phys. Chem. C 118(1), 243 (2014)
https://doi.org/10.1021/jp406244d
23 L. Ren, W. Zhou, Y. Wang, M. Meng, S. Wu, and S. Li, Magnetic properties of Mn3O4 film with a coexistence of two preferential orientations, J. Appl. Phys. 116(2), 023906 (2014)
https://doi.org/10.1063/1.4889819
24 U. H. Pi, K. Won Kim, J. Y. Bae, S. C. Lee, Y. J. Cho, K. S. Kim, and S. Seo, Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer, Appl. Phys. Lett. 97(16), 162507 (2010)
https://doi.org/10.1063/1.3502596
25 H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)
https://doi.org/10.1038/nmat3223
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed