Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (3): 138108   https://doi.org/10.1007/s11467-018-0754-6
  本期目录
Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets
Qian Gao (高乾)1, Hui-Li Wang (王会丽)1, Li-Fu Zhang (张丽芙)1, Shuang-Lin Hu (胡双林)2(), Zhen-Peng Hu (胡振芃)1()
1. School of Physics, Nankai University, Tianjin 300071, China
2. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
 全文: PDF(4189 KB)  
Abstract

In this study, based on the first-principles calculations, we systematically investigated the electronic and magnetic properties of the transition metal–oxide-incorporated 2D g-C3N4 nanosheet (labeled C3N4– TM–O, TM= Sc–Mn). The results suggest that the TM–O binds to g-C3N4 nanosheets strongly for all systems. We found that the 2D C3N4–TM–O framework is ferromagnetic for TM= Sc, Ti, V, Cr, while it is antiferromagnetic for TM= Mn. All the ferromagnetic systems exhibit the half-metallic property. Furthermore, Monte Carlo simulations based on the Heisenberg model suggest that the Curie temperatures (Tc) of the C3N4–TM–O (TM= Sc, Ti, V, Cr) framework are 169 K, 68 K, 203 K, and 190 K, respectively. Based on Bader charge analysis, we found that the origin of the half-metallicity at Fermi energy can be partially attributed to the transfer of electrons from TM atoms to the g-C3N4 nanosheet. In addition, we found that not only electrons but also holes can induce half-metallicity for 2D g-C3N4 nanosheets, which may help to understand the origin of half-metallicity for graphitic carbon nitride.

Key wordshalf-metallicity    first-principles    g-C3N4    Curie-temperature
收稿日期: 2017-12-30      出版日期: 2018-04-24
Corresponding Author(s): Shuang-Lin Hu (胡双林),Zhen-Peng Hu (胡振芃)   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(3): 138108.
Qian Gao (高乾), Hui-Li Wang (王会丽), Li-Fu Zhang (张丽芙), Shuang-Lin Hu (胡双林), Zhen-Peng Hu (胡振芃). Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets. Front. Phys. , 2018, 13(3): 138108.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0754-6
https://academic.hep.com.cn/fop/CN/Y2018/V13/I3/138108
1 R. A. de Groot, F. M. Mueller, P. G. Engen, and K. H. J. Buschow, New class of materials: Half-metallic ferromagnets,Phys. Rev. Lett. 50(25), 2024 (1983)
https://doi.org/10.1103/PhysRevLett.50.2024
2 I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Slater-Pauling behavior and origin of the halfmetallicity of the full-Heusler alloys, Phys. Rev. B 66(17), 174429 (2002)
https://doi.org/10.1103/PhysRevB.66.174429
3 K. Schwarz, CrO2 predicted as a half-metallic ferromagnet, J. Phys. F Met. Phys. 16(9), L211 (1986)
https://doi.org/10.1088/0305-4608/16/9/002
4 M. Sakamaki, T. Konishi, and Y. Ohta, K2Cr8O16 predicted as a half-metallic ferromagnet: Scenario for a metal-insulator transition, Phys. Rev. B 80(2), 024416 (2009)
https://doi.org/10.1103/PhysRevB.80.024416
5 J. H. Park, E. Vescovo, H. J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Direct evidence for a half-metallic ferromagnet, Nature 392(6678), 794 (1998)
https://doi.org/10.1038/33883
6 Q. Yao, M. Lu, Y. Du, F. Wu, K. Deng, and E. Kan, Designing half-metallic ferromagnetism by a new strategy: An example of superhalogen modified graphitic C3N4, J. Mater. Chem. C 6(7), 1709 (2018)
https://doi.org/10.1039/C7TC05087A
7 X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(1), 76 (2009)
https://doi.org/10.1038/nmat2317
8 W.J. Ong, L.L. Tan, Y. H. Ng, S.T. Yong, and S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159 (2016)
https://doi.org/10.1021/acs.chemrev.6b00075
9 F. Wu, Y. Liu, G. Yu, D. Shen, Y. Wang, and E. Kan, Visible-light-absorption in graphitic C3N4 bilayer: Enhanced by interlayer coupling, J. Phys. Chem. Lett. 3(22), 3330 (2012)
https://doi.org/10.1021/jz301536k
10 X. Li and J. Yang, Low-dimensional half-metallic materials: Theoretical simulations and design, WIREs. Comput. Mol. Sci. 7(4), e1314 (2017)
https://doi.org/10.1002/wcms.1314
11 X. Li and X. Wu, Two-dimensional monolayer designs for spintronics applications, WIREs. Comput. Mol. Sci. 6(4), 441 (2016)
https://doi.org/10.1002/wcms.1259
12 P. Qiu, H. Chen, C. Xu, N. Zhou, F. Jiang, X. Wang, and Y. Fu, Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst, J. Mater. Chem. A 3(48), 24237 (2015)
https://doi.org/10.1039/C5TA08406G
13 X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, and H. Li, Exfoliated graphene-like carbon nitride in organic solvents: Enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+, J. Mater. Chem. A 2(8), 2563 (2014)
https://doi.org/10.1039/c3ta13768f
14 Q. Y. Lin, L. Li, S. J. Liang, M. H. Liu, J. H. Bi, and L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities, Appl. Catal. B 163, 135 (2015)
https://doi.org/10.1016/j.apcatb.2014.07.053
15 Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, and L. Qu, Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution, ACS Nano 10(2), 2745 (2016)
https://doi.org/10.1021/acsnano.5b07831
16 D. Gao, Y. Liu, P. Liu, M. Si, and D. Xue, Atomically thin B doped g-C3N4 nanosheets: High-temperature ferromagnetism and calculated half-metallicity, Sci. Rep. 6(1), 35768 (2016)
https://doi.org/10.1038/srep35768
17 I. Choudhuri, G. Bhattacharyya, S. Kumar, and B. Pathak, Metal-free half-metallicity in a high energy phase C-doped gh-C3N4 system: A high Curie temperature planar system, J. Mater. Chem. C 4(48), 11530 (2016)
https://doi.org/10.1039/C6TC04163A
18 Y. Zhang, Z. Wang, and J. Cao, Prediction of magnetic anisotropy of 5d transition metal-doped g-C3N4, J. Mater. Chem. C 2(41), 8817 (2014)
https://doi.org/10.1039/C4TC01239A
19 D. Ghosh, G. Periyasamy, B. Pandey, and S. K. Pati, Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets, J. Mater. Chem. C 2(37), 7943 (2014)
https://doi.org/10.1039/C4TC01385A
20 I. Choudhuri, S. Kumar, A. Mahata, K. S. Rawat, and B. Pathak, Transition-metal embedded carbon nitride monolayers: high-temperature ferromagnetism and half-metallicity, Nanoscale 8(29), 14117 (2016)
https://doi.org/10.1039/C6NR03282F
21 D. Gao, Q. Xu, J. Zhang, Z. Yang, M. Si, Z. Yan, and D. Xue, Defect-related ferromagnetism in ultrathin metalfree g-C3N4 nanosheets, Nanoscale 6(5), 2577 (2014)
https://doi.org/10.1039/c3nr04743a
22 D. Ghosh, G. Periyasamy, and S. K. Pati, Transition metal embedded two-dimensional C3N4–graphene nanocomposite: A multifunctional material, J. Phys. Chem. C 118(28), 15487 (2014)
https://doi.org/10.1021/jp503367v
23 A. J. Du, S. Sanvito, and S. C. Smith, First-principles prediction of metal-free magnetism and intrinsic halfmetallicity in graphitic carbon nitride, Phys. Rev. Lett. 108(19), 197207 (2012)
https://doi.org/10.1103/PhysRevLett.108.197207
24 J. S. Lee, X. Wang, H. Luo, and S. Dai, Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids, Adv. Mater. 22(9), 1004 (2010)
https://doi.org/10.1002/adma.200903403
25 H. Li, W. Chen, X. Shen, J. Liu, X. Huang, and G. Yu, Adsorbing the 3d-transition metal atoms to effectively modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons, Phys. Chem. Chem. Phys. 19(5), 3694 (2017)
https://doi.org/10.1039/C6CP06717D
26 I. Choudhuri, P. Garg, and B. Pathak, TM@gt- C3N3 monolayers: High-temperature ferromagnetism and high anisotropy, J. Mater. Chem. C 4(35), 8253 (2016)
https://doi.org/10.1039/C6TC03030K
27 J. Zhou and Q. Sun, Magnetism of phthalocyaninebased organometallic single porous sheet, J. Am. Chem. Soc. 133(38), 15113 (2011)
https://doi.org/10.1021/ja204990j
28 Q. Sun, Y. Dai, Y. Ma, X. Li, W. Wei, and B. Huang, Two-dimensional metalloporphyrin monolayers with intriguing electronic and spintronic properties, J. Mater. Chem. C 3(26), 6901 (2015)
https://doi.org/10.1039/C5TC01493J
29 F. Wu, R. Tjornhammar, E. Kan, and Z. Li, A firstprinciples study on the electronic structure of onedimensional [TM(Bz)]∞ polymer (TM= Y, Zr, Nb, Mo, and Tc), Front. Phys. 4(3), 403 (2009)
https://doi.org/10.1007/s11467-009-0054-2
30 D. Wang, Z. Yang, L. C. Xu, X. Liu, R. Liu, and X. Li, The magnetic and half-metal properties of iron clusters adsorbed on armchair graphene nanoribbon, Comput. Theor. Chem. 1062, 84 (2015)
https://doi.org/10.1016/j.comptc.2015.03.019
31 K. Pi, K. M. McCreary, W. Bao, W. Han, Y. F. Chiang, Y. Li, S. W. Tsai, C. N. Lau, and R. K. Kawakami, Electronic doping and scattering by transition metals on graphene, Phys. Rev. B 80(7), 075406 (2009)
https://doi.org/10.1103/PhysRevB.80.075406
32 X. Lu, K. Xu, S. Tao, Z. Shao, X. Peng, W. Bi, P. Chen, H. Ding, W. Chu, C. Wu, and Y. Xie, Engineering the electronic structure of two-dimensional subnanopore nanosheets using molecular titanium-oxide incorporation for enhanced photocatalytic activity, Chem. Sci. 7(2), 1462 (2016)
https://doi.org/10.1039/C5SC03551A
33 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
34 G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
35 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
36 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
37 V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+ Umethod, J. Phys.: Condens. Matter 9(4), 767 (1997)
https://doi.org/10.1088/0953-8984/9/4/002
38 P. M. Panchmatia, B. Sanyal, and P. M. Oppeneer, GGA+ Umodeling of structural, electronic, and magnetic properties of iron porphyrin-type molecules, Chem. Phys. 343(1), 47 (2008)
https://doi.org/10.1016/j.chemphys.2007.10.030
39 H. J. Xiang, S. H. Wei, and M. H. Whangbo, Origin of the structural and magnetic anomalies of the layered compound SrFeO2: A density functional investigation, Phys. Rev. Lett. 100(16), 167207 (2008)
https://doi.org/10.1103/PhysRevLett.100.167207
40 X. Li, X. Wu, and J. Yang, Room-temperature halfmetallicity in La(Mn, Zn)AsO alloy via element substitutions, J. Am. Chem. Soc. 136(15), 5664 (2014)
https://doi.org/10.1021/ja412317s
41 Q. Gao, S. Hu, Y. Du, and Z. Hu, The origin of the enhanced photocatalytic activity of carbon nitride nanotubes: A first-principles study, J. Mater. Chem. A 5(10), 4827 (2017)
https://doi.org/10.1039/C6TA09747B
42 Y. Chen, B. Wang, S. Lin, Y. Zhang, and X. Wang, Activation of n→π* transitions in two-dimensional conjugated polymers for visible light photocatalysis, J. Phys. Chem. C 118(51), 29981 (2014)
https://doi.org/10.1021/jp510187c
43 E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, Improved grid-based algorithm for Bader charge allocation, J. Comput. Chem. 28(5), 899 (2007)
https://doi.org/10.1002/jcc.20575
44 G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36(3), 354 (2006)
https://doi.org/10.1016/j.commatsci.2005.04.010
45 F. Wu, C. Huang, H. Wu, C. Lee, K. Deng, E. Kan, and P. Jena, Atomically thin transition-metal dinitrides: High-temperature ferromagnetism and half-metallicity, Nano Lett. 15(12), 8277 (2015)
https://doi.org/10.1021/acs.nanolett.5b03835
46 M. Zhao, A. Wang, and X. Zhang, Half-metallicity of a kagome spin lattice: The case of a manganese bisdithiolene monolayer, Nanoscale 5(21), 10404 (2013)
https://doi.org/10.1039/c3nr03323f
47 H. K. Singh, P. Kumar, and U. V. Waghmare, Theoretical prediction of a stable 2D crystal of vanadium porphyrin: A half-metallic ferromagnet, J. Phys. Chem. C 119(45), 25657 (2015)
https://doi.org/10.1021/acs.jpcc.5b09763
48 W. Li, L. Sun, J. Qi, P. Jarillo-Herrero, M. Dinca, and J. Li, High temperature ferromagnetism in π-conjugated two-dimensional metal-organic frameworks, Chem. Sci. 8(4), 2859 (2017)
https://doi.org/10.1039/C6SC05080H
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed