Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (3): 138111   https://doi.org/10.1007/s11467-018-0755-5
  本期目录
Self-folding mechanics of graphene tearing and peeling from a substrate
Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu()
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
 全文: PDF(12256 KB)  
Abstract

Understanding the underlying mechanism in the tearing and peeling processes of graphene is crucial for the further hierarchical design of origami-like folding and kirigami-like cutting of graphene. However, the complex effects among bending moduli, adhesion, interlayer interaction, and local crystal structure during origami-like folding and kirigami-like cutting remain unclear, resulting in challenges to the practical applications of existing theoretical and experimental findings as well as to potential manipulations of graphene in metamaterials and nanodevices. Toward this end, classical molecular dynamics (MD) simulations are performed with synergetic theoretical analysis to explore the tearing and peeling of self-folded graphene from a substrate driven by external force and by thermal activation. It is found that the elastic energy localized at the small folding ridge plays a significant role in the crack trajectory. Due to the extremely small bending modulus of monolayer graphene, its taper angle when pulled by an external force follows a scaling law distinct from that in case of bilayer graphene. With the increase in the initial width of the folding ridge, the self-folded graphene, motivated by thermal fluctuations, can be self-assembled by spontaneous self-tearing and peeling from a substrate. Simultaneously, the scaling law between the taper angle and adhesive energy is independent of the motivations for thermal activation-induced self-assembly and external force tearing, providing effective insights into the underlying physics for graphene-based origami-like folding and kirigami-like cutting.

Key wordsgraphene    tearing    self-assembly    elastic energy    molecular dynamics simulation
收稿日期: 2018-01-26      出版日期: 2018-04-26
Corresponding Author(s): Heng-An Wu   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(3): 138111.
Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate. Front. Phys. , 2018, 13(3): 138111.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0755-5
https://academic.hep.com.cn/fop/CN/Y2018/V13/I3/138111
1 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
2 A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
3 R. Nair, H. Wu, P. Jayaram, I. Grigorieva, and A. Geim, Unimpeded permeation of water through helium-leak– tight graphene-based membranes, Science 335(6067), 442 (2012)
https://doi.org/10.1126/science.1211694
4 S. Hu, M. Lozada-Hidalgo, F. Wang, A. Mishchenko, F. Schedin, R. Nair, E. Hill, D. Boukhvalov, M. Katsnelson, R. Dryfe, I. V. Grigorieva, H. A. Wu, and A. K. Geim, Proton transport through one-atom-thick crystals, Nature 516(7530), 227 (2014)
https://doi.org/10.1038/nature14015
5 R. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. Wu, A. K. Geim, and R. R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343(6172), 752 (2014)
https://doi.org/10.1126/science.1245711
6 X. Liu, F. Wang, H. Wu, and W. Wang, Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface, Appl. Phys. Lett. 104(23), 231901 (2014)
https://doi.org/10.1063/1.4882085
7 M. Yan, F. Wang, C. Han, X. Ma, X. Xu, Q. An, L. Xu, C. Niu, Y. Zhao, X. Tian, P. Hu, H. Wu, and L. Mai, Nanowire templated semihollow bicontinuous graphene scrolls: Designed construction, mechanism, and enhanced energy storage performance, J. Am. Chem. Soc. 135(48), 18176 (2013)
https://doi.org/10.1021/ja409027s
8 D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts, H. Gao, R. Huang, J. S. Kim, T. Li, Y. Li, K. M. Liechti, N. Lu, H. S. Park, E. J. Reed, P. Wang, B. I. Yakobson, T. Zhang, Y. W. Zhang, Y. Zhou, and Y. Zhu, A review on mechanics and mechanical properties of 2D materials — Graphene and beyond, Extreme Mechanics Letters 13, 42 (2017)
https://doi.org/10.1016/j.eml.2017.01.008
9 V. Panchal, C. Giusca, A. Lartsev, R. Yakimova, and O. Kazakova, Local electric field screening in bi-layer graphene devices,Front. Phys. 2, 3 (2014)
https://doi.org/10.3389/fphy.2014.00003
10 G. Algara-Siller, O. Lehtinen, F. Wang, R. Nair, U. Kaiser, H. Wu, A. Geim, and I. Grigorieva, Square ice in graphene nanocapillaries, Nature 519(7544), 443 (2015)
https://doi.org/10.1038/nature14295
11 Y. Zhu, F. Wang, J. Bai, X. C. Zeng, and H. Wu, Compression limit of two-dimensional water constrained in graphene nanocapillaries, ACS Nano 9(12), 12197 (2015)
https://doi.org/10.1021/acsnano.5b06572
12 H. Yin, H. J. Qi, F. Fan, T. Zhu, B. Wang, and Y. Wei, Griffith criterion for brittle fracture in graphene, Nano Lett. 15(3), 1918 (2015)
https://doi.org/10.1021/nl5047686
13 Z. Song, Y. Ni, and Z. Xu, Geometrical distortion leads to Griffith strength reduction in graphene membranes, Extreme Mechanics Letters 14, 31 (2017)
https://doi.org/10.1016/j.eml.2017.01.005
14 J. W. Jiang and H. S. Park, Negative Poisson’s ratio in single-layer graphene ribbons, Nano Lett. 16(4), 2657 (2016)
https://doi.org/10.1021/acs.nanolett.6b00311
15 J. W. Jiang, T. Chang, X. Guo, and H. S. Park, Intrinsic negative Poisson’s ratio for single-layer graphene, Nano Lett. 16(8), 5286 (2016)
https://doi.org/10.1021/acs.nanolett.6b02538
16 G. Wang, Z. Dai, Y. Wang, P. Tan, L. Liu, Z. Xu, Y. Wei, R. Huang, and Z. Zhang, Measuring interlayer shear stress in bilayer graphene, Phys. Rev. Lett. 119(3), 036101 (2017)
https://doi.org/10.1103/PhysRevLett.119.036101
17 J. Annett and G. L. Cross, Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate, Nature 535(7611), 271 (2016)
https://doi.org/10.1038/nature18304
18 Y. Zhang, F. Zhang, Z. Yan, Q. Ma, X. Li, Y. Huang, and J. A. Rogers, Printing, folding and assembly methods for forming 3D mesostructures in advanced materials, Nature Reviews Materials 2(4), 17019 (2017)
https://doi.org/10.1038/natrevmats.2017.19
19 X. Meng, M. Li, Z. Kang, X. Zhang, and J. Xiao, Mechanics of self-folding of single-layer graphene, J. Phys. D Appl. Phys. 46(5), 055308 (2013)
https://doi.org/10.1088/0022-3727/46/5/055308
20 X. Chen, L. Zhang, Y. Zhao, X. Wang, and C. Ke, Graphene folding on flat substrates, J. Appl. Phys. 116(16), 164301 (2014)
https://doi.org/10.1063/1.4898760
21 X. Liu, F. Wang, and H. Wu, Anisotropic growth of buckling-driven wrinkles in graphene monolayer, Nanotechnology 26(6), 065701 (2015)
https://doi.org/10.1088/0957-4484/26/6/065701
22 M. K. Blees, A. W. Barnard, P. A. Rose, S. P. Roberts, K. L. McGill, P. Y. Huang, A. R. Ruyack, J. W. Kevek, B. Kobrin, D. A. Muller, and P. L. McEuen, Graphene kirigami, Nature 524(7564), 204 (2015)
https://doi.org/10.1038/nature14588
23 T. Zhang, S. Wu, R. Yang, and G. Zhang, Graphene: Nanostructure engineering and applications, Front. Phys. 12(1), 127206 (2017)
https://doi.org/10.1007/s11467-017-0648-z
24 E. Hamm, P. Reis, M. LeBlanc, B. Roman, and E. Cerda, Tearing as a test for mechanical characterization of thin adhesive films, Nat. Mater. 7(5), 386 (2008)
https://doi.org/10.1038/nmat2161
25 E. Bayart, A. Boudaoud, and M. Adda-Bedia, Finitedistance singularities in the tearing of thin sheets, Phys. Rev. Lett. 106(19), 194301 (2011)
https://doi.org/10.1103/PhysRevLett.106.194301
26 O. Kruglova, F. Brau, D. Villers, and P. Damman, How geometry controls the tearing of adhesive thin films on curved surfaces, Phys. Rev. Lett. 107(16), 164303 (2011)
https://doi.org/10.1103/PhysRevLett.107.164303
27 F. Brau, Tearing of thin sheets: cracks interacting through an elastic ridge, Phys. Rev. E 90(6), 062406 (2014)
https://doi.org/10.1103/PhysRevE.90.062406
28 B. Roman, Fracture path in brittle thin sheets: a unifying review on tearing, Int. J. Fract. 182(2), 209 (2013)
https://doi.org/10.1007/s10704-013-9869-5
29 A. Ibarra, B. Roman, and F. Melo, The tearing path in a thin anisotropic sheet from two pulling points: Wulff’s view, Soft Matter 12(27), 5979 (2016)
https://doi.org/10.1039/C6SM00734A
30 T. Zhang, X. Li, and H. Gao, Fracture of graphene: A review, Int. J. Fract. 196(1–2), 1 (2015)
https://doi.org/10.1007/s10704-015-0039-9
31 M. J. Moura and M. Marder, Tearing of free-standing graphene, Phys. Rev. E 88(3), 032405 (2013)
https://doi.org/10.1103/PhysRevE.88.032405
32 Y. Guo, C. Liu, Q. Yin, C. Wei, S. Lin, T. B. Hoffman, Y. Zhao, J. H. Edgar, Q. Chen, S. P. Lau, J. Dai, H. Yao, H. S. Wong, and Y. Chai, Distinctive in-plane cleavage behaviors of two-dimensional layered materials, ACS Nano 10(9), 8980 (2016)
https://doi.org/10.1021/acsnano.6b05063
33 J. Yang, Y. Wang, Y. Li, H. Gao, Y. Chai, and H. Yao, Edge orientations of mechanically exfoliated anisotropic two-dimensional materials, J. Mech. Phys. Solids 112, 157 (2018)
https://doi.org/10.1016/j.jmps.2017.11.026
34 D. Sen, K. S. Novoselov, P. M. Reis, and M. J. Buehler, Tearing graphene sheets from adhesive substrates produces tapered nanoribbons, Small 6(10), 1108 (2010)
https://doi.org/10.1002/smll.201000097
35 A. F. Fonseca and D. S. Galvao, Self-driven graphene tearing and peeling: A fully atomistic molecular dynamics investigation, arXiv: 1801.05354 (2018)
36 S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
https://doi.org/10.1006/jcph.1995.1039
37 S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112(14), 6472 (2000)
https://doi.org/10.1063/1.481208
38 Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene, Nat. Mater. 11(9), 759 (2012)
https://doi.org/10.1038/nmat3370
39 A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)
https://doi.org/10.1088/0965-0393/18/1/015012
40 J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, and J. M. Zuo, Free folding of suspended graphene sheets by random mechanical stimulation, Phys. Rev. Lett. 104(16), 166805 (2010)
https://doi.org/10.1103/PhysRevLett.104.166805
41 T. Kawai, S. Okada, Y. Miyamoto, and H. Hiura, Selfredirection of tearing edges in graphene: Tight-binding molecular dynamics simulations, Phys. Rev. B 80(3), 033401 (2009)
https://doi.org/10.1103/PhysRevB.80.033401
42 B. Lawn, Fracture of Brittle Solids, Cambridge: Cambridge University Press, 1993
43 Y. Wang and Z. Liu, The fracture toughness of graphene during the tearing process, Model. Simul. Mater. Sci. Eng. 24(8), 085002 (2016)
https://doi.org/10.1088/0965-0393/24/8/085002
44 Y. Y. Zhang and Y. Gu, Mechanical properties of graphene: Effects of layer number, temperature and isotope, Comput. Mater. Sci. 71, 197 (2013)
https://doi.org/10.1016/j.commatsci.2013.01.032
45 V. Hakim and A. Karma, Laws of crack motion and phase-field models of fracture, J. Mech. Phys. Solids 57(2), 342 (2009)
https://doi.org/10.1016/j.jmps.2008.10.012
46 S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, Ultrastrong adhesion of graphene membranes, Nat. Nanotechnol. 6(9), 543 (2011)
https://doi.org/10.1038/nnano.2011.123
47 R. Huang, Graphene: Show of adhesive strength, Nat. Nanotechnol. 6(9), 537 (2011)
https://doi.org/10.1038/nnano.2011.150
48 N. Lindahl, D. Midtvedt, J. Svensson, O. A. Nerushev, N. Lindvall, A. Isacsson, and E. E. Campbell, Determination of the bending rigidity of graphene via electrostatic actuation of buckled membranes, Nano Lett. 12(7), 3526 (2012)
https://doi.org/10.1021/nl301080v
[1] Supplementary Material1 Download
[2] Supplementary Material2 Download
[3] Supplementary Material3 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed