Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (3): 138104   https://doi.org/10.1007/s11467-018-0760-8
  本期目录
SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts
Zhinan Ma (马志楠)1,2(), Jibin Zhuang (庄吉彬)1, Xu Zhang (张旭)3, Zhen Zhou (周震)2,3()
1. School of Science, North University of China, Taiyuan 030051, China
2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
3. School of Materials Science and Engineering, National Institute for Advanced Materials, Computational Centre for Molecular Science, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300350, China
 全文: PDF(3718 KB)  
Abstract

Because of graphene and phosphorene, two-dimensional (2D) layered materials of group IV and group V elements arouse great interest. However, group IV–V monolayers have not received due attention. In this work, three types of SiP monolayers were computationally designed to explore their electronic structure and optical properties. Computations confirm the stability of these monolayers, which are all indirect-bandgap semiconductors with bandgaps in the range 1.38–2.21 eV. The bandgaps straddle the redox potentials of water at pH= 0, indicating the potential of the monolayers for use as watersplitting photocatalysts. The computed optical properties demonstrate that certain monolayers of SiP 2D materials are absorbers of visible light and would serve as good candidates for optoelectronic devices.

Key wordsgraphene    phosphorene    group IV-V monolayers    photocatalytic water splitting    SiP 2D materials
收稿日期: 2017-12-11      出版日期: 2018-03-20
Corresponding Author(s): Zhinan Ma (马志楠),Zhen Zhou (周震)   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(3): 138104.
Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts. Front. Phys. , 2018, 13(3): 138104.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0760-8
https://academic.hep.com.cn/fop/CN/Y2018/V13/I3/138104
1 Q. Tang and Z. Zhou, Graphene-analogous lowdimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)
https://doi.org/10.1016/j.pmatsci.2013.04.003
2 Q. Tang, Z. Zhou, and Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations, Wiley Interdiscip. Rev. Comput. Mol. Sci. 5(5), 360 (2015)
https://doi.org/10.1002/wcms.1224
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
4 D. Pacilé, J. C. Meyer, C. O. Girit, and A. Zettl, The two-dimensional phase of boron nitride: Few-atomiclayer sheets and suspended membranes, Appl. Phys. Lett. 92(13), 133107 (2008)
https://doi.org/10.1063/1.2903702
5 Y. Lin, T. V. Williams, and J. W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets, J. Phys. Chem. Lett. 1(1), 277 (2010)
https://doi.org/10.1021/jz9002108
6 R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, Hunting for monolayer boron nitride: Optical and Raman signatures, Small 7(4), 465 (2011)
https://doi.org/10.1002/smll.201001628
7 C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, Anomalous lattice vibrations of single- and fewlayer MoS2, ACS Nano 4(5), 2695 (2010)
https://doi.org/10.1021/nn1003937
8 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
9 L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
https://doi.org/10.1038/nnano.2014.35
10 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
11 E. S. Reich, Phosphorene excites materials scientists, Nature(7486), 19 (2014)
12 M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(37), 4248 (2011)
https://doi.org/10.1002/adma.201102306
13 M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Twodimensional transition metal carbides, ACS Nano 6(2), 1322 (2012)
https://doi.org/10.1021/nn204153h
14 X. Zhang, Z. Zhang, and Z. Zhou, MXene-based materials for electrochemical energy storage, J. Energy Chem. 27(1), 73 (2017)
https://doi.org/10.1016/j.jechem.2017.08.004
15 X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, MnPSe3 monolayer: A promising 2D visible-light photohydrolytic catalyst with high carrier mobility, Adv. Sci. 3(10), 1600062 (2016)
https://doi.org/10.1002/advs.201600062
16 J. S. Lee, X. Wang, H. Luo, and S. Dai, Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids, Adv. Mater. 22(9), 1004 (2010)
https://doi.org/10.1002/adma.200903403
17 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
https://doi.org/10.1021/nl0731872
18 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)
https://doi.org/10.1126/science.1157996
19 Y. Lin and J. W. Connell, Advances in 2D boron nitride nanostructures: Nanosheets, nanoribbons, nanomeshes, and hybrids with graphene, Nanoscale 4(22), 6908 (2012)
https://doi.org/10.1039/c2nr32201c
20 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. C. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
https://doi.org/10.1038/nnano.2010.279
21 S. J. R. Tan, I. Abdelwahab, Z. Ding, X. Zhao, T. Yang, G. Z. J. Loke, H. Lin, I. Verzhbitskiy, S. M. Poh, H. Xu, C. T. Nai, W. Zhou, G. Eda, B. Jia, and K. P. Loh, Chemical stabilization of 1T′ phase transition metal dichalcogenides with giant optical Kerr nonlinearity, J. Am. Chem. Soc. 139(6), 2504 (2017)
https://doi.org/10.1021/jacs.6b13238
22 A. SäynSätjoki, L. Karvonen, H. Rostami, A. Autere, S. Mehravar, A. Lombardo, R. A. Norwood, T. Hasan, N. Peyghambarian, H. Lipsanen, K. Kieu, A. C. Ferrari, M. Polini, and Z. Sun, Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers, Nat. Commun. 8(1), 893 (2017)
23 J. S. Qiao, X. H. Kong, Z. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5, 4475 (2014)
https://doi.org/10.1038/ncomms5475
24 H. Liu, Y. C. Du, Y. X. Deng, and P. D. Ye, Semiconducting black phosphorus: Synthesis, transport properties and electronic applications, Chem. Soc. Rev. 44(9), 2732 (2015)
https://doi.org/10.1039/C4CS00257A
25 M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of twodimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23(17), 2185 (2013)
https://doi.org/10.1002/adfm.201202502
26 A. Du, S. Sanvito, and S. C. Smith, First-principles prediction of metal-free magnetism and intrinsic halfmetallicity in graphitic carbon nitride, Phys. Rev. Lett. 108(19), 197207 (2012)
https://doi.org/10.1103/PhysRevLett.108.197207
27 X. Zhao, Z. Ma, D. Wu, X. Zhang, Y. Jing, and Z. Zhou, Computational study of catalytic effect of C3N4 on H2 release from complex hydrides, Int. J. Hydrogen Energy 40(29), 8897 (2015)
https://doi.org/10.1016/j.ijhydene.2015.05.041
28 S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
https://doi.org/10.1103/PhysRevLett.102.236804
29 H. Nakano, T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, T. Nonaka, Y. Seno, and H. Nakamura, Soft synthesis of single-crystal silicon monolayer sheets, Angew. Chem. Int. Ed. 45(38), 6303 (2006)
https://doi.org/10.1002/anie.200600321
30 Y. Chen, J. Xi, D. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. S. Huang, and L. Xie, Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys, ACS Nano 7(5), 4610 (2013)
https://doi.org/10.1021/nn401420h
31 S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano Lett. 12(11), 5576 (2012)
https://doi.org/10.1021/nl302584w
32 H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. M. Peeters, Anomalous Raman spectra and thickness-dependent electronic properties of WSe2, Phys. Rev. B 87(16), 165409 (2013)
https://doi.org/10.1103/PhysRevB.87.165409
33 S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)
https://doi.org/10.1002/anie.201411246
34 S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities, Angew. Chem. Int. Ed. 55(5), 1666 (2016)
https://doi.org/10.1002/anie.201507568
35 S. Zhang, W. Zhou, Y. Ma, J. Ji, B. Cai, S. A. Yang, Z. Zhu, Z. Chen, and H. Zeng, Antimonene oxides: Emerging tunable direct bandgap semiconductor and novel topological insulator, Nano Lett. 17(6), 3434 (2017)
https://doi.org/10.1021/acs.nanolett.7b00297
36 S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez-Herrero, P. Ares, F. Zamora, Z. Zhu, and H. Zeng, Recent progress in 2D group-VA semiconductors: From theory to experiment, Chem. Soc. Rev. 47, 982 (2018)
https://doi.org/10.1039/C7CS00125H
37 Y. Guo, S. Zhang, and Q. Wang, Electronic and optical properties of silicon based porous sheets, Phys. Chem. Chem. Phys. 16(31), 16832 (2014)
https://doi.org/10.1039/C4CP01491J
38 S. Zhang, S. Guo, Y. Huang, Z. Zhu, B. Cai, M. Xie, W. Zhou, and H. Zeng, Two-dimensional SiP: an unexplored direct band-gap semiconductor, 2D Mater. 4, 015030 (2017)
39 Y. Ding and Y. Wang, Density functional theory study of the silicene-like SiX and XSi3 (X= B, C, N, Al, P) Honeycomb Lattices: The various buckled structures and versatile electronic properties, J. Phys. Chem. C 117(35), 18266 (2013)
https://doi.org/10.1021/jp407666m
40 L. Zhou, Y. Guo, and J. Zhao, GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures, Phys. E 95, 149 (2018)
https://doi.org/10.1016/j.physe.2017.08.016
41 C. Barreteau, B. Michon, C. Besnard, and E. Giannini, High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors, J. Cryst. Growth 443, 75 (2016)
https://doi.org/10.1016/j.jcrysgro.2016.03.019
42 MedeA® version 2.16. MedeA® is registered trademark of Materials Design, Inc., Angel Fire, New Mexico, USA
43 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
44 J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
45 G. Martyna, M. Klein, and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)
https://doi.org/10.1063/1.463940
46 M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14(11), 2717 (2002)
https://doi.org/10.1088/0953-8984/14/11/301
47 H. L. Zhuang and R. G. Hennig, Single-layer group- III monochalcogenide photocatalysts for water splitting, Chem. Mater. 25(15), 3232 (2013)
https://doi.org/10.1021/cm401661x
48 V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner, and G. U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple, Science 318(5855), 1424 (2007)
https://doi.org/10.1126/science.1148841
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed