Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (3): 138107   https://doi.org/10.1007/s11467-018-0763-5
  本期目录
Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations
Hui-Li Wang (王会丽)1,3, Zhen-Peng Hu (胡振芃)1, Hui Li (李晖)2()
1. School of Physics, Nankai University, Tianjin 300071, China
2. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
3. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(26486 KB)  
Abstract

In order to obtain a comprehensive understanding of both thermodynamics and kinetics of water dissociation on TiO2, the reactions between liquid water and perfect and defective rutile TiO2 (110) surfaces were investigated using ab initio molecular dynamics simulations. The results showed that the free-energy barrier (~4.4 kcal/mol) is too high for a spontaneous dissociation of water on the perfect rutile (110) surface at a low temperature. The most stable oxygen vacancy (Vo1) on the rutile (110) surface cannot promote the dissociation of water, while other unstable oxygen vacancies can significantly enhance the water dissociation rate. This is opposite to the general understanding that Vo1 defects are active sites for water dissociation. Furthermore, we reveal that water dissociation is an exothermic reaction, which demonstrates that the dissociated state of the adsorbed water is thermodynamically favorable for both perfect and defective rutile (110) surfaces. The dissociation adsorption of water can also increase the hydrophilicity of TiO2.

Key wordsab initio molecular dynamics    rutile (110)    free energy barrier    spontaneous reaction    exothermic reaction
收稿日期: 2018-01-20      出版日期: 2018-04-19
Corresponding Author(s): Hui Li (李晖)   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(3): 138107.
Hui-Li Wang (王会丽), Zhen-Peng Hu (胡振芃), Hui Li (李晖). Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations. Front. Phys. , 2018, 13(3): 138107.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0763-5
https://academic.hep.com.cn/fop/CN/Y2018/V13/I3/138107
1 A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
https://doi.org/10.1038/238037a0
2 X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science 331(6018), 746 (2011)
https://doi.org/10.1126/science.1200448
3 S. J. Tan, F. Hao, Y. F. Ji, Y. Wang, J. Zhao, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou, Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2 (110)-1×1 Surface, J. Am. Chem. Soc. 134(24), 9978 (2012)
https://doi.org/10.1021/ja211919k
4 J. H. Liang, N. Wang, Q. X. Zhang, B. F. Liu, X. B. Kong, C. C. Wei, D. K. Zhang, B. J. Yan, Y. Zhao, and X. D. Zhang, Exploring the mechanism of a pure and amorphous black-blue TiO2:H thin film as a photoanode in water splitting, Nano Energy 42, 151 (2017)
https://doi.org/10.1016/j.nanoen.2017.10.062
5 V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides, Cambridge: Cambridge University Press, 1994
6 H. J. Freund, Introductory lecture: Oxide surfaces, Faraday Discuss. 114, 1 (1999)
https://doi.org/10.1039/a907182b
7 M. Ramamoorthy, D. Vanderbilt, and R. D. King-Smith, First-principles calculations of the energetics of stoichiometric TiO2 surfaces, Phys. Rev. B 49(23), 16721 (1994)
https://doi.org/10.1103/PhysRevB.49.16721
8 U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48(5–8), 53 (2003)
https://doi.org/10.1016/S0167-5729(02)00100-0
9 M. A. Henderson, An HREELS and TPD study of water on TiO2 (110): the extent of molecular versus dissociative adsorption, Surf. Sci. 355(1–3), 151 (1996)
https://doi.org/10.1016/0039-6028(95)01357-1
10 I. M. Brookes, C. A. Muryn, and G. Thornton, Imaging water dissociation on TiO2 (110), Phys. Rev. Lett. 87(26), 266103 (2001)
https://doi.org/10.1103/PhysRevLett.87.266103
11 R. Schaub, R. Thostrup, N. Lopez, E. Laegsgaard, I. Stensgaard, J. K. Norskov, and F. Besenbacher, Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110), Phys. Rev. Lett. 87(26), 266104 (2001)
https://doi.org/10.1103/PhysRevLett.87.266104
12 O. Bikondoa, C. L. Pang, R. Ithnin, C. A. Muryn, H. Onishi, and G. Thornton, Direct visualization of defect-mediated dissociation of water on TiO2 (110), Nat. Mater. 5(3), 189 (2006)
https://doi.org/10.1038/nmat1592
13 S. Wendt, J. Matthiesen, R. Schaub, E. K. Vestergaard, E. Lægsgaard, F. Besenbacher, and B. Hammer, Formation and splitting of paired hydroxyl groups on reduced TiO2 (110), Phys. Rev. Lett. 96(6), 066107 (2006)
https://doi.org/10.1103/PhysRevLett.96.066107
14 M. A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep. 66(6–7), 185 (2011)
https://doi.org/10.1016/j.surfrep.2011.01.001
15 C. L. Pang, R. Lindsay, and G. Thornton, Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces., Chem. Rev. 113(6), 3887 (2013)
https://doi.org/10.1021/cr300409r
16 M. B. Hugenschmidt, L. Gamble, and C. T. Campbell, The interaction of H2O with a TiO2 (110) surface, Surf. Sci. 302(3), 329 (1994)
https://doi.org/10.1016/0039-6028(94)90837-0
17 L. E. Walle, A. Borg, P. Uvdal, and A. Sandell, Experimental evidence for mixed dissociative and molecular adsorption of water on a rutile TiO2 (110) surface without oxygen vacancies, Phys. Rev. B 80(23), 235436 (2009)
https://doi.org/10.1103/PhysRevB.80.235436
18 H. H. Kristoffersen, J. Ø. Hansen, U. Martinez, Y. Y. Wei, J. Matthiesen, R. Streber, R. Bechstein, E. Lægsgaard, F. Besenbacher, B. Hammer, and S. Wendt, Role of steps in the dissociative adsorption of water on rutile TiO2 (110), Phys. Rev. Lett. 110(14), 146101 (2013)
https://doi.org/10.1103/PhysRevLett.110.146101
19 E. V. Stefanovich and T. N. Truong, Ab initio study of water adsorption on TiO2 (110): molecular adsorption versus dissociative chemisorption, Chem. Phys. Lett. 299(6), 623 (1999)
https://doi.org/10.1016/S0009-2614(98)01295-0
20 W. Langel, Car-Parrinello simulation of H2O dissociation on rutile, Surf. Sci. 496(1–2), 141 (2002)
https://doi.org/10.1016/S0039-6028(01)01606-5
21 P. J. D. Lindan, N. M. Harrison, J. M. Holender, and M. J. Gillan, First-principles molecular dynamics simulation of water dissociation on TiO2 (110), Chem. Phys. Lett. 261(3), 246 (1996)
https://doi.org/10.1016/0009-2614(96)00934-7
22 P. J. D. Lindan, N. M. Harrison, and M. J. Gillan, Mixed dissociative and molecular adsorption of water on the rutile (110) surface, Phys. Rev. Lett. 80(4), 762 (1998)
https://doi.org/10.1103/PhysRevLett.80.762
23 L. E. Walle, D. Ragazzon, A. Borg, P. Uvdal, and A. Sandell, Competing water dissociation channels on rutile TiO2 (110), Surf. Sci. 621, 77 (2014)
https://doi.org/10.1016/j.susc.2013.11.001
24 W. H. Zhang, J. L. Yang, Y. Luo, S. Monti, and V. Carravetta, Quantum molecular dynamics study of water on TiO2 (110) surface, J. Chem. Phys. 129(6), 064703 (2008)
https://doi.org/10.1063/1.2955452
25 L. A. Harris and A. A. Quong, Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110), Phys. Rev. Lett. 93(8), 086105 (2004)
https://doi.org/10.1103/PhysRevLett.93.086105
26 C. Zhang and P. J. D. Lindan, Multilayer water adsorption on rutile TiO2 (110): A first-principles study, J. Chem. Phys. 118(10), 4620 (2003)
https://doi.org/10.1063/1.1543983
27 N. Kumar, S. Neogi, P. R. C. Kent, A. V. Bandura, J. D. Kubicki, D. J. Wesolowski, D. Cole, and J. O. Sofo, Hydrogen bonds and vibrations of water on (110) rutile, J. Phys. Chem. C 113(31), 13732 (2009)
https://doi.org/10.1021/jp901665e
28 L. M. Liu, C. J. Zhang, G. Thornton, and A. Michaelides, Structure and dynamics of liquid water on rutile TiO2 (110), Phys. Rev. B 82(16), 161415 (2010)
https://doi.org/10.1103/PhysRevB.82.161415
29 H. Hussain, G. Tocci, T. Woolcot, X. Torrelles, C. L. Pang, D. S. Humphrey, C. M. Yim, D. C. Grinter, G. Cabailh, O. Bikondoa, R. Lindsay, J. Zegenhagen, A. Michaelides, and G. Thornton, Structure of a model TiO2 photocatalytic interface, Nat. Mater. 16(4), 461 (2017)
https://doi.org/10.1038/nmat4793
30 J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter, Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Comput. Phys. Commun. 167(2), 103 (2005)
https://doi.org/10.1016/j.cpc.2004.12.014
31 A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38(6), 3098 (1988)
https://doi.org/10.1103/PhysRevA.38.3098
32 C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37(2), 785 (1988)
https://doi.org/10.1103/PhysRevB.37.785
33 A. R. Khoei, P. Ghahremani, M. J. Abdolhosseini Qomi, and P. Banihashemi, Stability and sizedependency of temperature-related Cauchy-Born hypothesis, Comput. Mater. Sci. 50(5), 1731 (2011)
https://doi.org/10.1016/j.commatsci.2011.01.004
34 J. Oviedo, M. A. San Miguel, and J. F. Sanz, Oxygen vacancies on TiO2 (110) from first principles calculations, J. Chem. Phys. 121(15), 7427 (2004)
https://doi.org/10.1063/1.1796253
35 L. A. Harris and A. A. Quong, Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110), Phys. Rev. Lett. 93, 086105 (2004)
https://doi.org/10.1103/PhysRevLett.93.086105
36 P. J. D. Lindan and C. Zhang, Exothermic water dissociation on the rutile TiO2 (110) surface, Phys. Rev. B 72, 075439 (2005)
https://doi.org/10.1103/PhysRevB.72.075439
37 A. Laio and M. Parrinello, Escaping free-energy minima, PNAS 99(20), 12562 (2002)
https://doi.org/10.1073/pnas.202427399
38 D. Branduardi, G. Bussi, and M. Parrinello, Metadynamics with adaptive Gaussians, J. Chem. Theory Comput. 8(7), 2247 (2012)
https://doi.org/10.1021/ct3002464
39 N. G. Petrik and G. A. Kimmel, Reaction kinetics of water molecules with oxygen vacancies on rutile TiO2 (110), J. Phys. Chem. C 119(40), 23059 (2015)
https://doi.org/10.1021/acs.jpcc.5b07526
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed