Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (4): 137802   https://doi.org/10.1007/s11467-018-0768-0
  本期目录
Quantum confinement effect in β-SiC nanowires
Gang Peng (彭刚)1(), Xiaoyan Yu (于晓燕)2, Yan-Lan He (何焰兰)1, Gong-Yi Li (李公义)1, Yi-Xing Liu (刘一星)1, Xinfang Zhang (张鑫方)1, Xue-Ao Zhang (张学骜)1
1. college of Science, National University of Defense Technology, Changsha 410073, China
2. School of Electronic & Communication Engineering, Guiyang University, Guiyang 550005, China
 全文: PDF(44960 KB)  
Abstract

The quantum confinement effect is important in nanoelectronics and optoelectronics applications; however, there is a discrepancy between the theory of quantum confinement, which indicates that band-gap widening occurs only at small sizes, and experimental observations of band-gap widening in large-diameter nanowires (NWs). This paper reports an obvious blue shift of the absorption edge in the UV-visible absorption spectra of SiC NWs with diameters of 50–300 nm. On the basis of quantum confinement theory and high-resolution transmission electron microscopy images of SiC NWs, band-gap widening in SiC NWs with diameters of up to hundreds of nanometers is fully explained; the results could help to explain similar band-gap widening in other NWs with large diameters.

Key wordsquantum confinement effect    SiC nanowires (SiC NWs)    band gap
收稿日期: 2017-08-23      出版日期: 2018-03-20
Corresponding Author(s): Gang Peng (彭刚)   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(4): 137802.
Gang Peng (彭刚), Xiaoyan Yu (于晓燕), Yan-Lan He (何焰兰), Gong-Yi Li (李公义), Yi-Xing Liu (刘一星), Xinfang Zhang (张鑫方), Xue-Ao Zhang (张学骜). Quantum confinement effect in β-SiC nanowires. Front. Phys. , 2018, 13(4): 137802.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0768-0
https://academic.hep.com.cn/fop/CN/Y2018/V13/I4/137802
1 L. Brus, Electronic wave functions in semiconductor clusters: Experiment and theory, J. Phys. Chem. 90(12), 2555 (1986)
https://doi.org/10.1021/j100403a003
2 L. Han, M. Zeman and A. H. M. Smets, Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma, Appl. Phys. Lett. 106(21), 213106 (2015)
https://doi.org/10.1063/1.4921760
3 L. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57(10), 1046 (1990)
https://doi.org/10.1063/1.103561
4 V. Lehmann and U. Gösele, Porous silicon formation: A quantum wire effect, Appl. Phys. Lett. 58(8), 856 (1991)
https://doi.org/10.1063/1.104512
5 X. Wu, J. Fan, T. Qiu, X. Yang, G. Siu, and P. K. Chu, Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites, Phys. Rev. Lett. 94(2), 026102 (2005)
https://doi.org/10.1103/PhysRevLett.94.026102
6 F. Koch, V. Petrova-Koch, and T. Muschik, The luminescence of porous Si: The case for the surface state mechanism, J. Lumin. 57(1–6), 271 (1993)
https://doi.org/10.1016/0022-2313(93)90145-D
7 Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites, Phys. Rev. B 48(4), 2827 (1993)
https://doi.org/10.1103/PhysRevB.48.2827
8 D. Dai, X. Guo, and J. Fan, Identification of luminescent surface defect in SiC quantum dots, Appl. Phys. Lett. 106(5), 053115 (2015)
https://doi.org/10.1063/1.4907674
9 X. Wu, S. Xiong, G. Siu, G. Huang, Y. Mei, Z. Zhang, S. Deng, and C. Tan, Optical emission from excess Si defect centers in Si nanostructures, Phys. Rev. Lett. 91(15), 157402 (2003)
https://doi.org/10.1103/PhysRevLett.91.157402
10 M. Cahay, Quantum confinement VI: Nanostructured materials and devices, Proceedings of the International Symposium, The Electrochemical Society, 2001
11 X. Wu, S. Xiong, D. Fan, Y. Gu, X. Bao, G. Siu, and M. Stokes, Stabilized electronic state and its luminescence at the surface of oxygen-passivated porous silicon, Phys. Rev. B 62(12), R7759 (2000)
https://doi.org/10.1103/PhysRevB.62.R7759
12 T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3, Appl. Phys. Lett. 88(12), 123102 (2006)
https://doi.org/10.1063/1.2187434
13 S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, World Scientific, 1994
14 S. Wang, C. Zhang, Z. Wang, and X. Zu, Quantum confinement effect in silicon carbide nanostructures: A first principles study, Optoelectron. Rel. Mater 4(6), 771 (2010)
15 S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, and P. K. Chu, Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts, Nanotechnology 17(6), 1695 (2006)
https://doi.org/10.1088/0957-4484/17/6/025
16 V. Eskizeybek, A. Avcı, and M. Chhowalla, Structural and optical properties of CdO nanowires synthesized from Cd(OH)2 precursors by calcination, Cryst. Res. Technol. 46(10), 1093 (2011)
https://doi.org/10.1002/crat.201100221
17 A. Phuruangrat, P. Dumrongrojthanath, O. Yayapao, T. Thongtem, and S. Thongtem, Solvothermal synthesis and photocatalytic properties of CdS nanowires under UV and visible irradiation, Mater. Sci. Semicond. Process. 26, 329 (2014)
https://doi.org/10.1016/j.mssp.2014.04.026
18 J. Y. Lee, X. Lu, and Q. Lin, High-Q silicon carbide photonic-crystal cavities, Appl. Phys. Lett. 106(4), 041106 (2015)
https://doi.org/10.1063/1.4906923
19 H. P. Phan, D. V. Dao, P. Tanner, L. Wang, N. T. Nguyen, Y. Zhu, and S. Dimitrijev, Fundamental piezoresistive coefficients of p-type single crystalline 3CSiC, Appl. Phys. Lett. 104(11), 111905 (2014)
https://doi.org/10.1063/1.4869151
20 R. Shao, K. Zheng, Y. Zhang, Y. Li, Z. Zhang, and X. Han, Piezoresistance behaviors of ultra-strained SiC nanowires, Appl. Phys. Lett. 101(23), 233109 (2012)
https://doi.org/10.1063/1.4769217
21 H. P. Phan, The Piezoresistive Effect of Top Down p- Type 3C-SiC Nanowires, Springer International Publishing, 2017
https://doi.org/10.1007/978-3-319-55544-7_6
22 D. Pandey and P. Krishna, The origin of polytype structures, Progress in Crystal growth and Characterization, 7(1–4), 213 (1983)
https://doi.org/10.1016/0146-3535(83)90033-3
23 G. Li, X. Li, Z. Chen, J. Wang, H. Wang, and R. Che, Large areas of centimeters-long SiC nanowires synthesized by pyrolysis of a polymer precursor by a CVD route, J. Phys. Chem. C 113(41), 17655 (2009)
https://doi.org/10.1021/jp904277f
24 G. Peng, Y. Zhou, Y. He, X. Yu, X. A. Zhang, G. Y. Li, and H. Haick, UV-induced SiC nanowire sensors, J. Phys. D Appl. Phys. 48(5), 055102 (2015)
https://doi.org/10.1088/0022-3727/48/5/055102
25 G. Li, Ph. D. thesis, Synthesis and properties of ultralong SiC and Si3N4 nanowires, College of Science, National University of Defense Technology, China, 2010
26 G. Peng, Y. Zhou, Y. He, X. Yu, and G. Li, Fabrication and properties of ultraviolet photo-detectors based on SiC nanowires, Sci. China Phys. Mech. Astron. 55(7), 1168 (2012)
https://doi.org/10.1007/s11433-012-4790-x
27 Y. Li, C. Chen, J. T. Li, Y. Yang, and Z. M. Lin, Surface charges and optical characteristic of colloidal cubic SiC nanocrystals, Nanoscale Res. Lett. 6(1), 454 (2011)
https://doi.org/10.1186/1556-276X-6-454
28 F. A. Reboredo, L. Pizzagalli, and G. Galli, Computational engineering of the stability and optical gaps of SiC quantum dots, Nano Lett. 4(5), 801 (2004)
https://doi.org/10.1021/nl049876k
29 A. M. Rossi, T. E. Murphy, and V. Reipa, Ultraviolet photoluminescence from 6H silicon carbide nanoparticles, Appl. Phys. Lett. 92(25), 253112 (2008)
https://doi.org/10.1063/1.2950084
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed