Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 136802   https://doi.org/10.1007/s11467-018-0769-z
  本期目录
Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy
Fang Yang1, Yan Liang1, Li-Xia Liu1,2, Qing Zhu1,2, Wei-Hua Wang1, Xue-Tao Zhu1,2, Jian-Dong Guo1,2,3()
1. Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
 全文: PDF(3297 KB)  
Abstract

At heterointerfaces between complex oxides with polar discontinuity, the instability-induced electric field may drive electron redistribution, causing a dramatic change in the interfacial charge density. This results in the emergence of a rich diversity of exotic physical phenomena in these quasi-two-dimensional systems, which can be further tuned by an external field. To develop novel multifunctional electronic devices, it is essential to control the growth of polar oxide films and heterointerfaces with atomic precision. In this article, we review recent progress in control techniques for oxide film growth by molecular beam epitaxy (MBE). We emphasize the importance of tuning the microscopic surface structures of polar films for developing precise growth control techniques. Taking the polar SrTiO3 (110) and (111) surfaces as examples, we show that, by keeping the surface reconstructed throughout MBE growth, high-quality layer-by-layer homoepitaxy can be realized. Because the stability of different reconstructions is determined by the surface cation concentration, the growth rate from the Sr/Ti evaporation source can be monitored in real time. A precise, automated control method is established by which insulating homoepitaxial SrTiO3 (110) and (111) films can be obtained on doped metallic substrates. The films show atomically well-defined surfaces and high dielectric performance, which allows the surface carrier concentration to be tuned in the range of ~1013/cm2. By applying the knowledge of microstructures from fundamental surface physics to film growth techniques, new opportunities are provided for material science and related research.

Key wordscomplex oxide films    molecular beam epitaxy    surface reconstruction    heterointerfaces
收稿日期: 2018-01-08      出版日期: 2018-04-19
Corresponding Author(s): Jian-Dong Guo   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 136802.
Fang Yang, Yan Liang, Li-Xia Liu, Qing Zhu, Wei-Hua Wang, Xue-Tao Zhu, Jian-Dong Guo. Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy. Front. Phys. , 2018, 13(5): 136802.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0769-z
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/136802
1 A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Artificial charge-modulation in atomic-scale perovskite titanate superlattices, Nature 419(6905), 378 (2002)
https://doi.org/10.1038/nature00977
2 A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004); corrigendum: Nature 441(7089), 120 (2006)
https://doi.org/10.1038/nature04773
3 A. Gozar, G. Logvenov, L. F. Kourkoutis, A. T. Bollinger, L. A. Giannuzzi, D. A. Muller, and I. Bozovic, High-temperature interface superconductivity between metallic and insulating copper oxides, Nature 455(7214), 782 (2008)
https://doi.org/10.1038/nature07293
4 H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)
https://doi.org/10.1038/nmat3223
5 Y. W. Xie, C. Bell, Y. Hikita, and H. Y. Hwang, Tuning the electron gas at an oxide heterointerface via free surface charges, Adv. Mater. 23(15), 1744 (2011)
https://doi.org/10.1002/adma.201004673
6 A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J. M. Triscone, Electric field control of the LaAlO3/SrTiO3 interface ground state, Nature 456(7222), 624 (2008)
https://doi.org/10.1038/nature07576
7 C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nanoscale control of an interfacial metal-insulator transition at room temperature, Nat. Mater. 7(4), 298 (2008)
https://doi.org/10.1038/nmat2136
8 S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Ferroelectric field effect transistor based on epitaxial perovskite heterostructures, Science 276(5310), 238 (1997)
https://doi.org/10.1126/science.276.5310.238
9 W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. A. Blank, and M. R. Beasley, Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: Possibility of intrinsic doping, Phys. Rev. Lett. 98(19), 196802 (2007)
https://doi.org/10.1103/PhysRevLett.98.196802
10 D. G. Schlom and L. N. Pfeiffer, Oxide electronics: Upward mobility rocks! Nat. Mater. 9(11), 881 (2010)
https://doi.org/10.1038/nmat2888
11 Z. Q. Liu, C. J. Li, W. M. Lü, X. H. Huang, Z. Huang, S. W. Zeng, X. P. Qiu, L. S. Huang, A. Annadi, J. S. Chen, J. M. D. Coey, T. Venkatesan, and Ariando, Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: The role of oxygen vacancies and electronic reconstruction, Phys. Rev. X 3(2), 021010 (2013)
https://doi.org/10.1103/PhysRevX.3.021010
12 J. H. Haeni, C. D. Theis, and D. G. Schlom, RHEED intensity oscillations for the stoichiometric growth of Sr- TiO3 thin films by reactive molecular beam epitaxy, J. Electroceram. 4(2–3), 385 (2000)
https://doi.org/10.1023/A:1009947517710
13 A. Tselev, P. Ganesh, L. Qiao, W. Siemons, Z. Gai, M. D. Biegalski, A. P. Baddorf, and S. V. Kalinin, Oxygen control of atomic structure and physical properties of SrRuO3 surfaces, ACS Nano 7(5), 4403 (2013)
https://doi.org/10.1021/nn400923n
14 S. Y. Jang, S. J. Moon, B. C. Jeon, and J. S. Chung, PLD growth of epitaxially-stabilized 5d perovskite SrIrO3 thin films, J. Korean Phys. Soc. 56(6), 1814 (2010)
https://doi.org/10.3938/jkps.56.1814
15 Y. S. Kim, N. Bansal, C. Chaparro, H. Gross, and S. Oh, Sr flux stability against oxidation in oxide-molecularbeam- epitaxy environment: Flux, geometry, and pressure dependence, J. Vac. Sci. Technol. A 28(2), 271 (2010)
https://doi.org/10.1116/1.3298880
16 H. M. Christen, L. A. Boatner, J. D. Budai, M. F. Chisholm, L. A. Gea, P. J. Marrero, and D. P. Norton, The growth and properties of epitaxial KNbO3 thin films and KNbO3/KTaO3 superlattices, Appl. Phys. Lett. 68(11), 1488 (1996)
https://doi.org/10.1063/1.116263
17 H. J. Bae, J. Sigman, S. J. Park, Y. H. Heo, L. A. Boatner, and D. P. Norton, Growth of semiconducting KTaO3 thin films, Solid-State Electron. 48(1), 51 (2004)
https://doi.org/10.1016/S0038-1101(03)00240-5
18 Z. L. Liao, F. M. Li, P. Gao, L. Li, J. D. Guo, X. Q. Pan, R. Jin, E. W. Plummer, and J. D. Zhang, Origin of the metal-insulator transition in ultrathin films of La2/3Sr2/3MnO3, Phys. Rev. B 92(12), 125123 (2015)
https://doi.org/10.1103/PhysRevB.92.125123
19 Z. P. Li, M. Bosman, Z. Yang, P. Ren, L. Wang, L. Cao, X. Yu, C. Ke, M. B. H. Breese, A. Rusydi, W. Zhu, Z. Dong, and Y. L. Foo, Interface and surface cation stoichiometry modified by oxygen vacancies in epitaxial manganite films, Adv. Funct. Mater. 22(20), 4312 (2012)
https://doi.org/10.1002/adfm.201200143
20 W. S. Choi, C. M. Rouleau, S. S. A. Seo, Z. Luo, H. Zhou, T. T. Fister, J. A. Eastman, P. H. Fuoss, D. D. Fong, J. Z. Tischler, G. Eres, M. F. Chisholm, and H. N. Lee, Atomic layer engineering of perovskite oxides for chemically sharp heterointerfaces, Adv. Mater. 24(48), 6423 (2012)
https://doi.org/10.1002/adma.201202691
21 B. Stanka, W. Hebenstreit, U. Diebold, and S. A. Chambers, Surface reconstruction of Fe3O4(001), Surf. Sci. 448(1), 49 (2000)
https://doi.org/10.1016/S0039-6028(99)01182-6
22 P. K. Nayak, M. N. Hedhili, D. K. Cha, and H. N. Alshareef, High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment, Appl. Phys. Lett. 100(20), 202106 (2012); errutum: Appl. phys. Lett. 105(24), 249902 (2014)
https://doi.org/10.1063/1.4902402
23 C. K. Tan, G. K. L. Goh, and W. L. Cheah, Dielectric properties of hydrothermally epitaxied I–Vperovskite thin films, Thin Solid Films 515(16), 6577 (2007)
https://doi.org/10.1016/j.tsf.2006.11.109
24 T. S. Herng, S. P. Lau, S. F. Yu, H. Y. Yang, K. S. Teng, and J. S. Chen, Enhancement of ferromagnetism and stability in Cu-doped ZnO by N2O annealing, J. Phys.: Condens. Matter 19(35), 356214 (2007)
https://doi.org/10.1088/0953-8984/19/35/356214
25 D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature 430(7000), 657 (2004)
https://doi.org/10.1038/nature02756
26 L. D. Yao, S. Inkinen, and S. van Dijken, Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3, Nat. Commun. 8, 14544 (2017)
https://doi.org/10.1038/ncomms14544
27 F. Lichtenberg, D. Widmer, J. G. Bednorz, T. Williams, and A. Reller, Phase-diagram of latiox- from 2d layered ferroelectric insulator to 3d weak ferromagnetic semiconductor, Z. Phys. B- Condensed Matter 82(2), 211 (1991)
https://doi.org/10.1007/BF01324328
28 M. Choi, F. Oba, and I. Tanaka, Role of Ti antisitelike defects in SrTiO3, Phys. Rev. Lett. 103(18), 185502 (2009)
https://doi.org/10.1103/PhysRevLett.103.185502
29 F. Yang, Q. Zhang, Z. Yang, J. Gu, Y. Liang, W. Li, W. Wang, K. Jin, L. Gu, and J. Guo, Room-temperature ferroelectricity of SrTiO3 films modulated by cation concentration, Appl. Phys. Lett. 107(8), 082904 (2015)
https://doi.org/10.1063/1.4929610
30 E. Breckenfeld, N. Bronn, J. Karthik, A. R. Damodaran, S. Lee, N. Mason, and L. W. Martin, Effect of growth induced (non) stoichiometry on interfacial conductance in LaAlO3/SrTiO3, Phys. Rev. Lett. 110(19), 196804 (2013)
https://doi.org/10.1103/PhysRevLett.110.196804
31 H. Yamada, M. Kawasaki, T. Lottermoser, T. Arima, and Y. Tokura, LaMnO3/SrMnO3 interfaces with coupled charge-spin-orbital modulation, Appl. Phys. Lett. 89(5), 052506 (2006)
https://doi.org/10.1063/1.2266863
32 N. Nakagawa, H. Y. Hwang, and D. A. Muller, Why some interfaces cannot be sharp, Nat. Mater. 5(3), 204 (2006)
https://doi.org/10.1038/nmat1569
33 J. Chakhalian, J. W. Freeland, A. J. Millis, C. Panagopoulos, and J. M. Rondinelli, Emergent properties in plane view: Strong correlations at oxide interfaces, Rev. Mod. Phys. 86(4), 1189 (2014)
https://doi.org/10.1103/RevModPhys.86.1189
34 S. Okamoto and A. J. Millis, Electronic reconstruction at an interface between a Mott insulator and a band insulator, Nature 428(6983), 630 (2004)
https://doi.org/10.1038/nature02450
35 J. Chakhalian, J. W. Freeland, H. U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, and B. Keimer, Orbital reconstruction and covalent bonding at an oxide interface, Science 318(5853), 1114 (2007)
https://doi.org/10.1126/science.1149338
36 Q. Y. Wang, Z. Li, W. H. Zhang, Z. C. Zhang, J. S. Zhang, W. Li, H. Ding, Y. B. Ou, P. Deng, K. Chang, J. Wen, C. L. Song, K. He, J. F. Jia, S. H. Ji, Y. Y. Wang, L. L. Wang, X. Chen, X. C. Ma, and Q. K. Xue, Interfaceinduced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3, Chin. Phys. Lett. 29(3), 037402 (2012)
https://doi.org/10.1088/0256-307X/29/3/037402
37 M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li, L. F. Kourkoutis, J. A. Klug, H. Li, P. Ryan, L. P. Wang, M. Bedzyk, D. A. Muller, L. Q. Chen, J. Levy, and D. G. Schlom, A ferroelectric oxide made directly on silicon, Science 324(5925), 367 (2009)
https://doi.org/10.1126/science.1169678
38 Z. M. Wang, J. G. Feng, Y. Yang, Y. Yao, L. Gu, F. Yang, Q. L. Guo, and J. D. Guo, Cation stoichiometry optimization of SrTiO3 (110) thin films with atomic precision in homogeneous molecular beam epitaxy, Appl. Phys. Lett. 100(5), 051602 (2012)
https://doi.org/10.1063/1.3681796
39 J. G. Feng, F. Yang, Z. M. Wang, Y. Yang, L. Gu, J. D. Zhang, and J. D. Guo, Growth of SrTiO3 (110) film by oxide molecular beam epitaxy with feedback control, AIP Adv. 2(4), 041407 (2012)
https://doi.org/10.1063/1.4773555
40 S. Phark, Y. J. Chang, and T. Won Noh, Selective growth of perovskite oxides on SrTiO3 (001) by control of surface reconstructions, Appl. Phys. Lett. 98(16), 161908 (2011)
https://doi.org/10.1063/1.3583443
41 Y. J. Chang and S. H. Phark, Atomic-scale visualization of initial growth of perovskites on SrTiO3 (001) using scanning tunneling microscope, Curr. Appl. Phys. 17(5), 640 (2017)
https://doi.org/10.1016/j.cap.2016.12.014
42 R. A. Betts and C. W. Pitt, Growth of thin-film lithium-niobate by molecular-beam epitaxy, Electron. Lett. 21(21), 960 (1985)
https://doi.org/10.1049/el:19850678
43 M. Petrucci, C. W. Pitt, and P. J. Dobson, RHEED studies on Z-cut LiNbO3, Electron. Lett. 22(18), 954 (1986)
https://doi.org/10.1049/el:19860651
44 J. R. Jr Arthur, Interaction of Ga and As2 molecular beams with GaAs surfaces, J. Appl. Phys. 39(8), 4032 (1968)
https://doi.org/10.1063/1.1656901
45 D. G. Schlom and J. S. Harris, MBE Growth of High Tc Superconductors, in: Molecular Beam Epitaxy: Applications to Key Materials, Ed. RFC Farrow, Park Ridge, 1995, p. 505
https://doi.org/10.1016/B978-081551371-1.50008-1
46 Y. S. Kim, N. Bansal, and S. Oh, Crucible aperture: An effective way to reduce source oxidation in oxide molecular beam epitaxy process, J. Vac. Sci. Technol. A 28(4), 600 (2010)
https://doi.org/10.1116/1.3449051
47 Y. S. Kim, N. Bansal, and S. Oh, Simple self-gettering differential-pump for minimizing source oxidation in oxide-MBE environment, J. Vac. Sci. Technol. A 29(4), 041505 (2011)
https://doi.org/10.1116/1.3591384
48 H. T. Zhang, L. R. Dedon, L. W. Martin, and R. Engel-Herbert, Self-regulated growth of LaVO3 thin films by hybrid molecular beam epitaxy, Appl. Phys. Lett. 106(23), 233102 (2015)
https://doi.org/10.1063/1.4922213
49 B. Jalan, R. Engel-Herbert, N. J. Wright, and S. Stemmer, Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach, J. Vac. Sci. Technol. A 27(3), 461 (2009)
https://doi.org/10.1116/1.3106610
50 P. Fisher, H. Du, M. Skowronski, P. A. Salvador, O. Maksimov, and X. Weng, Stoichiometric, nonstoichiometric, and locally nonstoichiometric SrTiO3 films grown by molecular beam epitaxy, J. Appl. Phys. 103(1), 013519 (2008)
https://doi.org/10.1063/1.2827992
51 Z. Yu, Y. Liang, C. Overgaard, X. Hu, J. Curless, H. Li, Y. Wei, B. Craigo, D. Jordan, R. Droopad, J. Finder, K. Eisenbeiser, D. Marshall, K. Moore, J. Kulik, and P. Fejes, Advances in heteroepitaxy of oxides on silicon, Thin Solid Films462–463, 51 (2004)
https://doi.org/10.1016/j.tsf.2004.05.088
52 C. P. I. Ichimiya Ayahiko, Reflection High Energy Election Diffraction, Cambridge: Cambridge University Press, 2004
https://doi.org/10.1017/CBO9780511735097
53 P. Moetakef, D. G. Ouellette, J. Y. Zhang, T. A. Cain, S. J. Allen, and S. Stemmer, Growth and properties of GdTiO3 films prepared by hybrid molecular beam epitaxy, J. Cryst. Growth 355(1), 166 (2012)
https://doi.org/10.1016/j.jcrysgro.2012.06.052
54 Y. Liang, W. T. Li, S. Y. Zhang, C. J. Lin, C. Li, Y. Yao, Y. Q. Li, H. Yang, and J. D. Guo, Homoepitaxial SrTiO3 (111) film with high dielectric performance and atomically well-defined surface, Sci. Rep. 5(1), 10634 (2015)
https://doi.org/10.1038/srep10634
55 M. P. Warusawithana, C. Richter, J. A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A. A. Pawlicki, L. F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J. N. Eckstein, D. A. Muller, C. S. Hellberg, J. Mannhart, and D. G. Schlom, LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces, Nat. Commun. 4, 2351 (2013)
https://doi.org/10.1038/ncomms3351
56 J. Goniakowski, F. Finocchi, and C. Noguera, Polarity of oxide surfaces and nanostructures, Rep. Prog. Phys. 71(1), 016501 (2008)
https://doi.org/10.1088/0034-4885/71/1/016501
57 J. A. Enterkin, A. K. Subramanian, B. C. Russell, M. R. Castell, K. R. Poeppelmeier, and L. D. Marks, A homologous series of structures on the surface of SrTiO3 (110), Nat. Mater. 9(3), 245 (2010)
https://doi.org/10.1038/nmat2636
58 R. Bachelet, F. Valle, I. C. Infante, F. Sanchez, and J. Fontcuberta, Step formation, faceting, and bunching in atomically flat SrTiO3 (110) surfaces, Appl. Phys. Lett. 91(25), 251904 (2007)
https://doi.org/10.1063/1.2825586
59 J. Brunen and J. Zegenhagen, Investigation of the Sr- TiO3 (110) surface by means of LEED, scanning tunneling microscopy and Auger spectroscopy, Surf. Sci. 389(1–3), 349 (1997)
60 H. Bando, Y. Aiura, Y. Haruyama, T. Shimizu, and Y. Nishihara, Structure and electronic states on reduced SrTiO3 (110) surface observed by scanning-tunnelingmicroscopy and spectroscopy, J. Vac. Sci. Technol. B 13(3), 1150 (1995)
https://doi.org/10.1116/1.588227
61 B. C. Russell and M. R. Castell, Reconstructions on the polar SrTiO3 (110) surface: Analysis using STM, LEED, and AES, Phys. Rev. B 77(24), 245414 (2008)
https://doi.org/10.1103/PhysRevB.77.245414
62 Z. M. Wang, K. H. Wu, Q. L. Guo, and J. D. Guo, Tuning the termination of the SrTiO3 (110) surface by Ar+ sputtering, Appl. Phys. Lett. 95(2), 021912 (2009)
https://doi.org/10.1063/1.3180701
63 F. M. Li, Z. M. Wang, S. Meng, Y. B. Sun, J. L. Yang, Q. L. Guo, and J. D. Guo, Reversible transition between thermodynamically stable phases with low density of oxygen vacancies on the SrTiO3 (110) surface, Phys. Rev. Lett. 107(3), 036103 (2011)
https://doi.org/10.1103/PhysRevLett.107.036103
64 Z. M. Wang, F. Yang, Z. Q. Zhang, Y. Y. Tang, J. G. Feng, K. H. Wu, Q. L. Guo, and J. D. Guo, Evolution of the surface structures on SrTiO3 (110) tuned by Ti or Sr concentration, Phys. Rev. B 83(15), 155453 (2011)
https://doi.org/10.1103/PhysRevB.83.155453
65 Y. Haruyama, Y. Aiura, H. Bando, Y. Nishihara, and H. Kato, Annealing temperature dependence on the electronic structure of the reduced SrTiO3 (111) surface, J. Electron Spectroscopy and Related Phenomena88–91, 695 (1998)
https://doi.org/10.1016/S0368-2048(97)00201-6
66 S. Sekiguchi, M. Fujimoto, M. G. Kang, S. Koizumi, S. B. Cho, and J. Tanaka, Structure analysis of SrTiO3 (111) polar surfaces, Jpn. J. Appl. Phys. 37(7), 4140 (1998)
https://doi.org/10.1143/JJAP.37.4140
67 S. Sekiguchi, M. Fujimoto, M. Nomura, S. B. Cho, J. Tanaka, T. Nishihara, M. G. Kang, and H. H. Park, Atomic force microscopic observation of SrTiO3 polar surface, Solid State Ion. 108(1–4), 73 (1998)
https://doi.org/10.1016/S0167-2738(98)00021-6
68 H. Tanaka and T. Kawai, Surface structure of reduced SrTiO3 (111) observed by scanning tunneling microscopy, Surf. Sci. 365(2), 437 (1996)
https://doi.org/10.1016/0039-6028(96)00739-X
69 B. C. Russell and M. R. Castell, ( 13× 13)R13.9◦ and (7×7)R19.1 ◦ reconstructions of the polar SrTiO3 (111) surface, Phys. Rev. B 75(15), 155433 (2007)
https://doi.org/10.1103/PhysRevB.75.155433
70 B. C. Russell and M. R. Castell, Surface of sputtered and annealed polar SrTiO3 (111): TiOx-rich (n×n) reconstructions, J. Phys. Chem. C 112(16), 6538 (2008)
https://doi.org/10.1021/jp711239t
71 J. G. Feng, X. T. Zhu, and J. D. Guo, Reconstructions on SrTiO3 (111) surface tuned by Ti/Sr deposition, Surf. Sci. 614, 38 (2013)
https://doi.org/10.1016/j.susc.2013.03.020
72 Z. M. Wang, F. M. Li, S. Meng, J. D. Zhang, E. W. Plummer, U. Diebold, and J. D. Guo, Strain-induced defect superstructure on the SrTiO3 (110) surface, Phys. Rev. Lett. 111(5), 056101 (2013)
https://doi.org/10.1103/PhysRevLett.111.056101
73 K. Shimoyama, K. Kubo, T. Maeda, and K. Yamabe, Epitaxial growth of BaTiO3 thin film on SrTiO3 substrate in ultra-high vacuum without introducing oxidant, Jpn. J. Appl. Phys. 40(5a), L463 (2001)
https://doi.org/10.1143/JJAP.40.L463
74 K. Shimoyama, M. Kiyohara, A. Uedono, and K. Yamabe, Homoepitaxial growth of SrTiO3 in an ultrahigh vacuum with automatic feeding of oxygen from the substrate at temperatures as low as 370◦C, Jpn. J. Appl. Phys. 41(3a), L269 (2002)
https://doi.org/10.1143/JJAP.41.L269
75 K. Shimoyama, M. Kiyohara, K. Kubo, A. Uedono, and K. Yamabe, Epitaxial growth of BaTiO3/SrTiO3 structures on SrTiO3 substrate with automatic feeding of oxygen from the substrate, J. Appl. Phys. 92(8), 4625 (2002)
https://doi.org/10.1063/1.1506196
76 R. A. De Souza, V. Metlenko, D. Park, and T. E. Weirich, Behavior of oxygen vacancies in single-crystal SrTiO3: Equilibrium distribution and diffusion kinetics, Phys. Rev. B 85(17), 174109 (2012)
https://doi.org/10.1103/PhysRevB.85.174109
77 F. M. Li, F. Yang, Y. Liang, S. Li, Z. Yang, Q. Zhang, W. Li, X. Zhu, L. Gu, J. Zhang, E. W. Plummer, and J. Guo, -doping of oxygen vacancies dictated by thermodynamics in epitaxial SrTiO3 films, AIP Adv. 7(6), 065001 (2017)
https://doi.org/10.1063/1.4985048
78 L. D. Marks, A. N. Chiaramonti, S. U. Rahman, and M. R. Castell, Transition from order to configurational disorder for surface reconstructions on SrTiO3 (111), Phys. Rev. Lett. 114(22), 226101 (2015)
https://doi.org/10.1103/PhysRevLett.114.226101
79 H. Z. Cheng and A. Selloni, Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile, Phys. Rev. B 79(9), 092101 (2009)
https://doi.org/10.1103/PhysRevB.79.092101
80 J. Shin, A. Y. Borisevich, V. Meunier, J. Zhou, E. W. Plummer, S. V. Kalinin, and A. P. Baddorf, Oxygen- Induced Surface Reconstruction of SrRuO3 and Its Effect on the BaTiO3 Interface, ACS Nano 4(7), 4190 (2010)
https://doi.org/10.1021/nn1008337
81 L. M. Peng, Electron atomic scattering factors and scattering potentials of crystals, Micron 30(6), 625 (1999)
https://doi.org/10.1016/S0968-4328(99)00033-5
82 B. Kubota, Decomposition of higher oxides of chromium under various pressures of oxygen, J. Am. Ceram. Soc. 44(5), 239 (1961)
https://doi.org/10.1111/j.1151-2916.1961.tb15368.x
83 R. N. Song, M. H.Hu, X. R. Chen, and J. D. Guo, Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3 (111), Front. Phys. 10(3), 321 (2015)
https://doi.org/10.1007/s11467-015-0467-z
84 M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, and D. H. A. Blank, Structure-property relation of SrTiO3/LaAlO3 interfaces, Adv. Mater. 21(17), 1665 (2009)
https://doi.org/10.1002/adma.200801448
85 R. Tromp, G. W. Rubloff, P. Balk, F. K. Legoues, and E. J. Vanloenen, High-temperature SiO2 decomposition at the SiO2/Si interface, Phys. Rev. Lett. 55(21), 2332 (1985)
https://doi.org/10.1103/PhysRevLett.55.2332
86 Y. W. Xie and H. Y. Hwang, Tuning the electrons at the LaAlO3/SrTiO3 interface: From growth to beyond growth, Chin. Phys. B 22(12), 127301 (2013)
https://doi.org/10.1088/1674-1056/22/12/127301
87 W. T. Li, Y. Liang, W. H. Wang, F. Yang, and J. D. Guo, Precise control of LaTiO3 (110) film growth by molecular beam epitaxy and surface termination of the polar film, Acta Physica Sinica 64(7), 078103 (2015)
88 I. C. Infante, J. O. Osso, F. Sanchez, and J. Fontcuberta, Tuning in-plane magnetic anisotropy in (110) La2/3Ca1/3MnO3 films by anisotropic strain relaxation, Appl. Phys. Lett. 92(1), 012508 (2008)
https://doi.org/10.1063/1.2828701
89 J. X. Ma, X. F. Liu, T. Lin, G. Y. Gao, J. P. Zhang, W. B. Wu, X. G. Li, and J. Shi, Interface ferromagnetism in (110)-oriented La0.7Sr0.3MnO3/SrTiO3 ultrathin superlattices, Phys. Rev. B 79(17), 174424 (2009)
https://doi.org/10.1103/PhysRevB.79.174424
90 A. Roy and D. Vanderbilt, Theory of prospective perovskite ferroelectrics with double Rocksalt order, Phys. Rev. B 83(13), 134116 (2011)
https://doi.org/10.1103/PhysRevB.83.134116
91 J. Chang, K. Lee, M. H. Jung, J. H. Kwon, M. Kim, and S. K. Kim, Emergence of room-temperature magnetic ordering in artificially fabricated ordered-doubleperovskite Sr2FeRuO6, Chem. Mater. 23(11), 2693 (2011)
https://doi.org/10.1021/cm200454z
92 K. Y. Yang, W. G. Zhu, D. Xiao, S. Okamoto, Z. Q. Wang, and Y. Ran, Possible interaction-driven topological phases in (111) bilayers of LaNiO3, Phys. Rev. B 84(20), 201104(R) (2011)
93 D. Xiao, W. G. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun. 2, 596 (2011)
https://doi.org/10.1038/ncomms1602
94 R. Mishra, J. R. Soliz, P. M. Woodward, and W. Windl, Ca2MnRuO6: Magnetic order arising from chemical chaos, Chem. Mater. 24(14), 2757 (2012)
https://doi.org/10.1021/cm301007m
95 F. D. M. Haldane, Model for a quantum Hall-effect without Landau-Levels – condensed-matter realization of the parity anomaly, Phys. Rev. Lett. 61(18), 2015 (1988)
https://doi.org/10.1103/PhysRevLett.61.2015
96 D. Doennig, W. E. Pickett, and R. Pentcheva, Massive symmetry breaking in LaAlO3/SrTiO3 (111) quantum wells: A three-orbital strongly correlated generalization of graphene, Phys. Rev. Lett. 111(12), 126804 (2013)
https://doi.org/10.1103/PhysRevLett.111.126804
97 C. R. Ma, M. Liu, C. L. Chen, Y. Lin, Y. R. Li, J. S. Horwitz, J. C. Jiang, E. I. Meletis, and Q. Y. Zhang, The origin of local strain in highly epitaxial oxide thin films, Sci. Rep. 3(1), 3092 (2013)
https://doi.org/10.1038/srep03092
98 D. G. Schlom, L. Q. Chen, X. Q. Pan, A. Schmehl, and M. A. Zurbuchen, A thin film approach to engineering functionality into oxides, J. Am. Ceram. Soc. 91(8), 2429 (2008)
https://doi.org/10.1111/j.1551-2916.2008.02556.x
99 J. Liu, M. Kareev, S. Prosandeev, B. Gray, P. Ryan, J. W. Freeland, and J. Chakhalian, Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices, Appl. Phys. Lett. 96(13), 133111 (2010)
https://doi.org/10.1063/1.3371690
100 J. L. Blok, X. Wan, G. Koster, D. H. A. Blank, and G. Rijnders, Epitaxial oxide growth on polar (111) surfaces, Appl. Phys. Lett. 99(15), 151917 (2011)
https://doi.org/10.1063/1.3652701
101 Y. Mukunoki, N. Nakagawa, T. Susaki, and H. Y. Hwang, Atomically flat (110) SrTiO3 and heteroepitaxy, Appl. Phys. Lett. 86(17), 171908 (2005)
https://doi.org/10.1063/1.1920415
102 G. Koster, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, Imposed layer-by-layer growth by pulsed laser interval deposition, Appl. Phys. Lett. 74(24), 3729 (1999)
https://doi.org/10.1063/1.123235
103 M. Kareev, S. Prosandeev, B. Gray, J. Liu, P. Ryan, A. Kareev, E. Ju Moon, and J. Chakhalian, Sub-monolayer nucleation and growth of complex oxides at high supersaturation and rapid flux modulation, J. Appl. Phys. 109(11), 114303 (2011)
https://doi.org/10.1063/1.3590146
104 B. Dam, J. H. Rector, J. Johansson, J. Huijbregtse, and D. G. De Groot, Mechanism of incongruent ablation of SrTiO3, J. Appl. Phys. 83(6), 3386 (1998)
https://doi.org/10.1063/1.367106
105 M. Hu, Q. Zhang, L. Gu, Q. Guo, Y. Cao, M. Kareev, J. Chakhalian, and J. Guo, Reconstruction-stabilized epitaxy of LaCoO3/SrTiO3 (111) heterostructures by pulsed laser deposition, Appl. Phys. Lett. 112(3), 031603 (2018)
https://doi.org/10.1063/1.5006298
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed