Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (4): 137304   https://doi.org/10.1007/s11467-018-0770-6
  本期目录
Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge
Ben-Hu Zhou1(), Ben-Liang Zhou2, Yang-Su Zeng1, Man-Yi Duan3, Guang-Hui Zhou2()
1. Department of Physics, Shaoyang University, Shaoyang 422001, China
2. Department of Physics and Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, China
3. College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China
 全文: PDF(1477 KB)  
Abstract

Using the nonequilibrium Green’s function method combined with the tight-binding Hamiltonian, we theoretically investigate the spin-dependent transmission probability and spin Seebeck coefficient of a crossed armchair-edge graphene nanoribbon (AGNR) superlattice p-n junction under a perpendicular magnetic field with a ferromagnetic insulator, where junction widths W1 of 40 and 41 are considered to exemplify the effect of semiconducting and metallic AGNRs, respectively. A pristine AGNR system is metallic when the transverse layer m = 3j + 2 with a positive integer j and an insulator otherwise. When stubs are present, a semiconducting AGNR junction with width W1 = 40 always shows metallic behavior regardless of the potential drop magnitude, magnetization strength, stub length, and perpendicular magnetic field strength. However, metallic or semiconducting behavior can be obtained from a metallic AGNR junction with W1 = 41 by adjusting these physical parameters. Furthermore, a metal-to-semiconductor transition can be obtained for both superlattice p-n junctions by adjusting the number of periods of the superlattice. In addition, the spin-dependent Seebeck coefficient and spin Seebeck coefficient of the two systems are of the same order of magnitude owing to the appearance of a transmission gap, and the maximum absolute value of the spin Seebeck coefficient reaches 370 μV/K when the optimized parameters are used. The calculated results offer new possibilities for designing electronic or heat-spintronic nanodevices based on the graphene superlattice p-n junction.

Key wordscrossed graphene superlattice p-n junction    spin-dependent transport properties    Seebeck coefficient    nonequilibrium Green’s function
收稿日期: 2018-01-10      出版日期: 2018-04-19
Corresponding Author(s): Ben-Hu Zhou,Guang-Hui Zhou   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(4): 137304.
Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge. Front. Phys. , 2018, 13(4): 137304.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0770-6
https://academic.hep.com.cn/fop/CN/Y2018/V13/I4/137304
1 F. J. DiSalvo, Thermoelectric cooling and power generation, Science 285(5428), 703 (1999)
https://doi.org/10.1126/science.285.5428.703
2 R. Mahajan, Chia-pin Chiu, and G. Chrysler, Cooling a microprocessor chip, Proc. IEEE 94(8), 1476 (2006)
https://doi.org/10.1109/JPROC.2006.879800
3 C. B. Vining, An inconvenient truth about thermoelectrics, Nat. Mater. 8(2), 83 (2009)
https://doi.org/10.1038/nmat2361
4 A. Banerjee, B. Fauque, K. Izawa, A. Miyake, I. Sheikin, J. Flouquet, B. Lenoir, and K. Behnia, Transport anomalies across the quantum limit in semimetallic Bi0.96Sb0.04, Phys. Rev. B 78(16), 161103(R) (2008)
5 C. Hohn, M. Galffy, and A. Freimuth, Resistivity, Hall effect, Nernst effect, and thermopower in the mixed state of La1.85Sr0.15CuO4, Phys. Rev. B 50(21), 15875 (1994)
https://doi.org/10.1103/PhysRevB.50.15875
6 J. P. Small, K. M. Perez, and P. Kim, Modulation of thermoelectric power of individual carbon nanotubes, Phys. Rev. Lett. 91(25), 256801 (2003)
https://doi.org/10.1103/PhysRevLett.91.256801
7 Y. M. Zuev, W. Chang, and P. Kim, Thermoelectric and magnetothermoelectric transport measurements of graphene, Phys. Rev. Lett. 102(9), 096807 (2009)
https://doi.org/10.1103/PhysRevLett.102.096807
8 P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, Anomalous thermoelectric transport of Dirac particles in graphene, Phys. Rev. Lett. 102(16), 166808 (2009)
https://doi.org/10.1103/PhysRevLett.102.166808
9 J. G. Checkelsky and N. P. Ong, Thermopower and Nernst effect in graphene in a magnetic field, Phys. Rev. B 80(8), 081413(R) (2009)
10 D. Dragoman and M. Dragoman, Giant thermoelectric effect in graphene, Appl. Phys. Lett. 91(20), 203116 (2007)
https://doi.org/10.1063/1.2814080
11 Y. Ouyang and J. Guo, A theoretical study on thermoelectric properties of graphene nanoribbons, Appl. Phys. Lett. 94(26), 263107 (2009)
https://doi.org/10.1063/1.3171933
12 Y. X. Xing, Q. F. Sun, and J. Wang, Nernst and Seebeck effects in a graphene nanoribbon, Phys. Rev. B 80(23), 235411 (2009)
https://doi.org/10.1103/PhysRevB.80.235411
13 K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin Seebeck effect, Nature 455(7214), 778 (2008)
https://doi.org/10.1038/nature07321
14 M. G. Zeng, W. Huang, and G. C. Liang, Spindependent thermoelectric effects in graphene-based spin valves, Nanoscale 5(1), 200 (2013)
https://doi.org/10.1039/C2NR32226A
15 M. G. Zeng, Y. P. Feng, and G. C. Liang, Graphenebased spin caloritronics, Nano Lett. 11(3), 1369 (2011)
https://doi.org/10.1021/nl2000049
16 S. G. Cheng, Spin thermopower and thermoconductance in a ferromagnetic graphene nanoribbon, J. Phys. Condens. Matter 24(38), 385302 (2012)
https://doi.org/10.1088/0953-8984/24/38/385302
17 Y. S. Liu, X. F. Wang, and F. Chi, Non-magnetic doping induced a high spin-filter efficiency and large spin Seebeck eFFect in zigzag graphene nanoribbons, J. Mater. Chem. C Mater. Opt. Electron. Devices 1(48), 8046 (2013)
https://doi.org/10.1039/c3tc31537a
18 X. B. Chen, Y. Z. Liu, B.-L. Gu, W. H. Duan, and F. Liu, Giant room-temperature spin caloritronics in spinsemiconducting graphene nanoribbons, Phys. Rev. B 90(12), 121403(R) (2014)
19 R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413(6856), 597 (2001)
https://doi.org/10.1038/35098012
20 A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451, 163 (2008)
https://doi.org/10.1038/nature06381
21 Y. S. Liu and Y. C. Chen, Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations, Phys. Rev. B 79(19), 193101 (2009)
https://doi.org/10.1103/PhysRevB.79.193101
22 Y. S. Liu, Y. R. Chen, and Y. C. Chen, Thermoelectric efficiency in nanojunctions: A comparison between atomic junctions and molecular junctions, ASC Nano 3(11), 3497 (2009)
https://doi.org/10.1021/nn900986r
23 Y. S. Liu, X. F. Yang, X. H. Fan, and Y. J. Xia, Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot, J. Phys. Condens. Matter 20(13), 135226 (2008)
https://doi.org/10.1088/0953-8984/20/13/135226
24 Z. X. Xie, L. M. Tang, C. N. Pan, K. M. Li, K. Q. Chen, and W. H. Duan, Enhancement of thermoelectric properties in graphene nanoribbons modulated with stub structures, Appl. Phys. Lett. 100(7), 073105 (2012)
https://doi.org/10.1063/1.3685694
25 F. Mazzamuto, V. Hung Nguyen, Y. Apertet, C. Caër, C. Chassat, J. Saint-Martin, and P. Dollfus, Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons, Phys. Rev. B 83(23), 235426 (2011)
https://doi.org/10.1103/PhysRevB.83.235426
26 V. T. Tran, J. Saint-Martin, and P. Dollfus, High thermoelectric performance in graphene nanoribbons by graphene/BN interface engineering, Nanotechnology 26(49), 495202 (2015)
https://doi.org/10.1088/0957-4484/26/49/495202
27 J. W. Li, B. Wang, Y. J. Yu, Y. D. Wei, Z. Z. Yu, and Y. Wang, Spin-resolved quantum transport in graphenebased nanojunctions, Front. Phys. 12(4), 126501 (2017)
https://doi.org/10.1007/s11467-016-0614-1
28 T. Gunst, T. Markussen, A. P. Jauho, and M. Brandbyge, Thermoelectric properties of finite graphene antidot lattices, Phys. Rev. B 84(15), 155449 (2011)
https://doi.org/10.1103/PhysRevB.84.155449
29 H. Karamitaheri, M. Pourfath, R. Faez, and H. Kosina, Geometrical effects on the thermoelectric properties of ballistic graphene antidot lattices, J. Appl. Phys. 110(5), 054506 (2011)
https://doi.org/10.1063/1.3629990
30 Y. H. Yan, Q. F. Liang, H. Zhao, C. Q. Wu, and B. W. Li, Thermoelectric properties of one-dimensional graphene antidot arrays, Phys. Lett. A 376(35), 2425 (2012)
https://doi.org/10.1016/j.physleta.2012.06.010
31 P.-H. Chang and B. K. Nikolić, Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics, Phys. Rev. B 86(4), 041406(R) (2012)
32 M. Wierzbicki, R. Swirkowicz, and J. Barnaś, Giant spin thermoelectric efficiency in ferromagnetic graphene nanoribbons with antidots, Phys. Rev. B 88(23), 235434 (2013)
https://doi.org/10.1103/PhysRevB.88.235434
33 J. R. Williams, L. DiCarlo, and C. M. Marcus, Quantum hall effect in a gate-controlled p-n junction of graphene, Science 317(5838), 638 (2007)
https://doi.org/10.1126/science.1144657
34 T. Lohmann, K. von Klitzing, and J. H. Smet, Four terminal magneto-transport in graphene p-n junctions created by spatially selective doping, Nano Lett. 9(5), 1973 (2009)
https://doi.org/10.1021/nl900203n
35 L. DiCarlo, J. R. Williams, Y. M. Zhang, D. T. Mc- Clure, and C. M. Marcus, Shot noise in graphene, Phys. Rev. Lett. 100(15), 156801 (2008)
https://doi.org/10.1103/PhysRevLett.100.156801
36 N. N. Klimov, S. T. Le, J. Yan, P. Agnihotri, E. Comfort, J. U. Lee, D. B. Newell, and C. A. Richter, Edge-state transport in graphene p-njunctions in the quantum Hall regime, Phys. Rev. B 92(24), 241301(R) (2015)
37 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science 313(5789), 951 (2006)
https://doi.org/10.1126/science.1130681
38 E. D. Herbschleb, R. K. Puddy, P. Marconcini, J. P. Griffiths, G. A. C. Jones, M. Macucci, C. G. Smith, and M. R. Connolly, Direct imaging of coherent quantum transport in graphene p-n-p junctions, Phys. Rev. B 92(12), 125414 (2015)
https://doi.org/10.1103/PhysRevB.92.125414
39 B. Őzyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S. Levitov, and P. Kim, Electronic transport and quantum hall effect in bipolar graphene p-n-p junctions, Phys. Rev. Lett. 99(16), 166804 (2007)
https://doi.org/10.1103/PhysRevLett.99.166804
40 R. N. Sajjad and A. W. Ghosh, High efficiency switching using graphene based electron optics, Appl. Phys. Lett. 99(12), 123101 (2011)
https://doi.org/10.1063/1.3640224
41 A. F. Young and P. Kim, Quantum interference and Klein tunnelling in graphene heterojunction, Nat. Phys. 5(3), 222 (2009)
42 C. H. Park, Y. W. Son, L. Yang, M. L. Cohen, and S. G. Louie, Electron beam supercollimation in graphene superlattices, Nano Lett. 8(9), 2920 (2008)
https://doi.org/10.1021/nl801752r
43 M. Woszczyna, M. Friedemann, T. Dziomba, T. Weimann, and F. J. Ahlers, Graphene p-n junction arrays as quantum-Hall resistance standards, Appl. Phys. Lett. 99(2), 022112 (2011)
https://doi.org/10.1063/1.3608157
44 T. Low and J. Appenzeller, Electronic transport properties of a tilted graphene p-njunction, Phys. Rev. B 80(15), 155406 (2009)
https://doi.org/10.1103/PhysRevB.80.155406
45 Y. X. Xing, J. Wang, and Q. F. Sun, Focusing of electron flow in a bipolar graphene ribbon with different chiralities, Phys. Rev. B 81(16), 165425 (2010)
https://doi.org/10.1103/PhysRevB.81.165425
46 N. Dai and Q. F. Sun, Mode mixing induced by disorder in a graphene pnp junction in a magnetic field, Phys. Rev. B 95(6), 064205 (2017)
https://doi.org/10.1103/PhysRevB.95.064205
47 H. Y. Tian, K. S. Chan, and J. Wang, Efficient spin injection in graphene using electron optics, Phys. Rev. B 86(24), 245413 (2012)
https://doi.org/10.1103/PhysRevB.86.245413
48 F. M. Xu, Z. Z. Yu, Z. R. Gong, and H. Jin, Firstprinciples study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices, Front. Phys. 12(4), 127306 (2017)
https://doi.org/10.1007/s11467-017-0650-5
49 B. H. Zhou, B. L. Zhou, Y. G. Yao, G. H. Zhou, and M. Hu, Spin-dependent Seebeck effects in a graphene superlattice p-n junction with different shapes, J. Phys.: Condens. Matter 29(40), 405303 (2017)
https://doi.org/10.1088/1361-648X/aa80cc
50 S. Datta, Quantum Transport-Atom to Transistor, England: Cambridge University Press, 2005
https://doi.org/10.1017/CBO9781139164313
51 H. J. W. Haug and A.P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Berlin: Springer, 1998
52 A. P. Jauho, N. S. Wingreen, and Y. Meir, Timedependent transport in interacting and noninteracting resonanttunneling systems, Phys. Rev. B 50(8), 5528 (1994)
https://doi.org/10.1103/PhysRevB.50.5528
53 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
54 Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
55 L. Ci, L. Song, D. Jariwala, A. L. ElÃas, W. Gao, M. Terrones, and P. M. Ajayan, Graphene shape control by multistage cutting and transfer, Adv. Mater. 21(44), 4487 (2009)
https://doi.org/10.1002/adma.200900942
56 H. Haugen, D. Huertas-Hernando, and A. Brataas, Spin transport in proximity-induced ferromagnetic graphene, Phys. Rev. B 77(11), 115406 (2008)
https://doi.org/10.1103/PhysRevB.77.115406
57 K. H. Ding, Z. G. Zhu, and G. Su, Spin-dependent transport and current-induced spin transfer torque in a strained graphene spin valve, Phys. Rev. B 89(19), 195443 (2014)
https://doi.org/10.1103/PhysRevB.89.195443
58 Q. F. Sun and X. C. Xie, CT-invariant quantum spin hall effect in ferromagnetic graphene, Phys. Rev. Lett. 104(6), 066805 (2010)
https://doi.org/10.1103/PhysRevLett.104.066805
59 M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F Met. Phys. 15(4), 851 (1985)
https://doi.org/10.1088/0305-4608/15/4/009
60 D. H. Lee and J. D. Joannopoulos, Simple scheme for surfaceband calculations (II): The Green’s function, Phys. Rev. B 23(10), 4997 (1981)
https://doi.org/10.1103/PhysRevB.23.4997
61 R. Świrkowicz, M. Wierzbicki, and J. Barnaś, Thermoelectric effects in transport through quantum dots attached to ferromagnetic leads with noncollinear magnetic moments, Phys. Rev. B 80(19), 195409 (2009)
https://doi.org/10.1103/PhysRevB.80.195409
62 P. Trocha and J. Barnaś, Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena, Phys. Rev. B 85(8), 085408 (2012)
https://doi.org/10.1103/PhysRevB.85.085408
63 X. B. Chen, D. P. Liu, W. H. Duan, and H. Guo, Photon-assisted thermoelectric properties of noncollinear spin valves, Phys. Rev. B 87(8), 085427 (2013)
https://doi.org/10.1103/PhysRevB.87.085427
64 S. H. Lv, S. B. Feng, and Y. X. Li, Thermopower and conductance for a graphene p-n junction, J. Phys. Condens. Matter 24(14), 145801 (2012)
https://doi.org/10.1088/0953-8984/24/14/145801
65 T. Rejec, A. Ramšak, and J. H. Jefferson, Spindependent thermoelectric transport coe_cients in near perfect quantum wires, Phys. Rev. B 65(23), 235301 (2002)
https://doi.org/10.1103/PhysRevB.65.235301
66 B. H. Zhou, B. L. Zhou, Y. S. Zeng, G. H. Zhou, and T. Ouyang, Seebeck effects in a graphene nanoribbon coupled to two ferromagnetic leads, J. Appl. Phys. 115(11), 114305 (2014) B. H. Zhou, B. L. Zhou, Y. S. Zeng, G. H. Zhou, and T. Ouyang, Spin-dependent Seebeck effects in a graphene nanoribbon coupled to two square lattice ferromagnetic leads, J. Appl. Phys. 117(10), 104305 (2015)
https://doi.org/10.1063/1.4914486
67 L. J. Yin, K. K. Bai, W. X. Wang, S. Y. Li, Y. Zhang, and L. He, Landau quantization of Dirac fermions in graphene and its multilayers, Front. Phys. 12(4), 127208 (2017)
https://doi.org/10.1007/s11467-017-0655-0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed