Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 136104   https://doi.org/10.1007/s11467-018-0774-2
  本期目录
High-pressure polymorphs of LiPN2: A first-principles study
Jian Lv1, Xin Yang2, Dan Xu2(), Yu-Xin Huang3, Hong-Bo Wang2(), Hui Wang2
1. College of Materials Science and Engineering, Jilin University, Changchun 130012, China
2. State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
3. College of Basic Science, Changchun University of Technology, Changchun 130012, China
 全文: PDF(10843 KB)  
Abstract

In this work, high-pressure phase behavior of LiPN2 within 0–300 GPa was studied by using an unbiased structure searching method in combination with first-principles calculations. Three pressureinduced phase transitions were predicted, as tI16→hR4→cF64→oP8 at 44, 136, and 259 GPa, respectively. The six-fold coordination environments were found for all high-pressure polymorphs, which are substantially different from the four-fold coordination environments observed in the tI16 structure. The hR4 and cF64 structures consist of close-packed PN6 and LiN6 octahedra connected by edge-sharing, whereas the oP8 structure is built up from edge- and face-sharing PN6 and LiN6 octahedra with N lying in the center of the trigonal prisms. The electronic structure analysis reveals that LiPN2 is a semiconductor within the pressure range studied and P-N and Li-N bonds are covalent and ionic, respectively. The results obtained are expected to provide insight and guidance for future experiments on LiPN2 and other alkali metal nitridophosphates.

Key wordslithium nitridophosphates    phase transition    high pressure    first principles
收稿日期: 2018-01-04      出版日期: 2018-04-24
Corresponding Author(s): Dan Xu,Hong-Bo Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 136104.
Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study. Front. Phys. , 2018, 13(5): 136104.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0774-2
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/136104
1 E. M. Bertschler, R. Niklaus, and W. Schnick, Li12P3N9 with non-condensed [P3N9]12− rings and its highpressure polymorph Li4PN3 with infinite chains of PN4− tetrahedra, Chemistry 23(40), 9592 (2017)
https://doi.org/10.1002/chem.201700979
2 A. Al-Qawasmeh and N. A. W. Holzwarth, Li14P2O3N6 and Li7PN4: Computational study of two nitrogen rich crystalline LiPON electrolyte materials, J. Power Sources 364, 410 (2017)
https://doi.org/10.1016/j.jpowsour.2017.08.025
3 W. Schnick and J. Luecke, Lithium ion conductivity of LiPN2 and Li7PN4, Solid State Ion. 38(3–4), 271 (1990)
https://doi.org/10.1016/0167-2738(90)90432-Q
4 E. M. Bertschler, C. Dietrich, J. Janek, and W. Schnick, Li18P6N16 — A lithium nitridophosphate with unprecedented tricyclic [P6N16]18− Ions, Chemistry 23(9), 2185 (2017)
https://doi.org/10.1002/chem.201605316
5 W. Schnick and U. Berger, Li10P4N10 — A lithium phosphorus(V) nitride containing the new complex anion [P4N10]10−, Angew. Chem. Int. Ed. Engl. 30(7), 830 (1991)
https://doi.org/10.1002/anie.199108301
6 R. Marchand, P. L’Haridon, and Y. Laurent, Etude cristallochimique de LiPN2: Une structure derivée de la cristobalite, J. Solid State Chem. 43(2), 126 (1982)
https://doi.org/10.1016/0022-4596(82)90221-3
7 Y. M. Basalaev, Y. N. Zhuravlev, V. S. Permina, and A. S. Poplavnoi, LiPN2 and NaPN2 crystals: Structural features and chemical bonding, J. Struct. Chem. 48(6), 996 (2007)
https://doi.org/10.1007/s10947-007-0162-1
8 A. V. Kosobutsky, Lattice dynamics and elastic properties of LiPN2 and NaPN2, J. Phys. Condens. Matter 21(40), 405404 (2009)
https://doi.org/10.1088/0953-8984/21/40/405404
9 D. Baumann and W. Schnick, Pentacoordinate phosphorus in a high-pressure polymorph of phosphorus nitride imide P4N6(NH), Angew. Chem. Int. Ed. 53(52), 14490 (2014)
https://doi.org/10.1002/anie.201406086
10 F. J. Pucher, S. R. Römer, F. W. Karau, and W. Schnick, Phenakite-type BeP2N4 — A possible precursor for a new hard spinel-type material, Chemistry 16(24), 7208 (2010)
https://doi.org/10.1002/chem.201000153
11 Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
https://doi.org/10.1103/PhysRevB.82.094116
12 Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
https://doi.org/10.1016/j.cpc.2012.05.008
13 Y. Wang and Y. Ma, Perspective: Crystal structure prediction at high pressures, J. Chem. Phys. 140(4), 040901 (2014)
https://doi.org/10.1063/1.4861966
14 Y. Wang, J. Lv, L. Zhu, S. Lu, K. Yin, Q. Li, H. Wang, L. Zhang, and Y. Ma, Materials discovery via CALYPSO methodology, J. Phys.: Condens. Matter 27(20), 203203 (2015)
https://doi.org/10.1088/0953-8984/27/20/203203
15 H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang, and Y. Ma, CALYPSO structure prediction method and its wide application, Comput. Mater. Sci. 112(Part B), 406 (2016)
16 L. Zhang, Y. Wang, J. Lv, and Y. Ma, Materials discovery at high pressures, Nat. Rev. Mater. 2(4), 17005 (2017)
https://doi.org/10.1038/natrevmats.2017.5
17 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
18 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
19 H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
20 A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
https://doi.org/10.1103/PhysRevB.78.134106
21 S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, LOBSTER: A tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem. 37(11), 1030 (2016)
https://doi.org/10.1002/jcc.24300
22 K. Momma and F. Izumi, VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst. 44(6), 1272 (2011)
https://doi.org/10.1107/S0021889811038970
23 D. Xu and B. Li, Exotic high-pressure behavior of double nitride CuPN2 (unpublished)
24 R. W. G. Wyckoff, Crystal structure of high temperature cristobalite, Am. J. Sci. s 5–9(54), 448 (1925)
25 M. Råsander and M. A. Moram, Electronic structure of the high and low pressure polymorphs of MgSiN2, Mater. Res. Express 3(8), 085902 (2016)
https://doi.org/10.1088/2053-1591/3/8/085902
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed