Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 138206   https://doi.org/10.1007/s11467-018-0776-0
  本期目录
Reconceptualizing kinesin’s working cycle as separate chemical and mechanical processes
Hui-Juan Xu1,2, Tong Tong1,2, Rui-Zheng Hou1,2(), Hong-Rong Li1,2
1. School of Science, Xi’an Jiaotong University, Xi’an 710049, China
2. Institute of Quantum Optics and Quantum Information, Xi’an Jiaotong University, Xi’an 710049, China
 全文: PDF(1211 KB)  
Abstract

The biomolecular motor kinesin uses chemical energy released from a fuel reaction to generate directional movement and produce mechanical work. The underlying physical mechanism is not fully understood yet. To analyze the energetics of the motor, we reconceptualize its chemomechanical cycle in terms of separate fuel reaction and work production processes and introduce a thermodynamic constraint to optimize the cycle. The model predicts that the load dependences of the motor’s velocity, stepping ratio, and dwell time are determined by the mechanical parameters of the motor–track system rather than the fuel reaction rate. This behavior is verified using reported experimental data from wild-type and elongated kinesins. The fuel reaction and work production processes indicate that kinesin is driven by switching between two chemical states, probably following a general pattern for molecular motors. The comparison with experimental data indicates that the fuel reaction processes are close to adiabatic, which is important for efficient operation of the motor. The model also suggests that a soft, short neck linker is important for the motor to maintain its load transport velocity.

Key wordskinesin    chemomechanical coupling    thermodynamics    entropy production
收稿日期: 2017-11-30      出版日期: 2018-04-24
Corresponding Author(s): Rui-Zheng Hou   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 138206.
Hui-Juan Xu, Tong Tong, Rui-Zheng Hou, Hong-Rong Li. Reconceptualizing kinesin’s working cycle as separate chemical and mechanical processes. Front. Phys. , 2018, 13(5): 138206.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0776-0
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/138206
1 R. D. Vale and R. A. Milligan, The way things move: Looking under the hood of molecular motor proteins, Science 288(5463), 88 (2000)
https://doi.org/10.1126/science.288.5463.88
2 R. D. Vale, The molecular motor toolbox for intracellular transport, Cell 112(4), 467 (2003)
https://doi.org/10.1016/S0092-8674(03)00111-9
3 S. Rice, A. W. Lin, D. Safer, C. L. Hart, N. Naber, B. O. Carragher, S. M. Cain, E. Pechatnikova, E. M. Wilson-Kubalek, M. Whittaker, E. Pate, R. Cooke, E. W. Taylor, R. A. Milligan, and R. D. Vale, A structural change in the kinesin motor protein that drives motility, Nature 402(6763), 778 (1999)
https://doi.org/10.1038/45483
4 S. Rice, Y. Cui, C. Sindelar, N. Naber, M. Matuska, R. Vale, and R. Cooke, Thermodynamics properties of the kinesin neck-region docking to the catalytic core, Biophys. J. 84(3), 1844 (2003)
https://doi.org/10.1016/S0006-3495(03)74992-3
5 K. Visscher, M. J. Schnitzer, and S. M. Block, Single kinesin molecules studied with a molecular force clamp, Nature 400(6740), 184 (1999)
https://doi.org/10.1038/22146
6 N. J. Carter and R. A. Cross, Mechanics of the kinesin step, Nature 435(7040), 308 (2005)
https://doi.org/10.1038/nature03528
7 M. Nishiyama, H. Higuchi, and T. Yanagida, Chemomechanical coupling of the forward and backward steps of single kinesin molecules, Nat. Cell Biol. 4(10), 790 (2002)
https://doi.org/10.1038/ncb857
8 Y. Taniguchi, M. Nishiyama, Y. Ishii, and T. Yanagida, Entropy rectifies the Brownian steps of kinesin, Nat. Chem. Biol. 1(6), 342 (2005)
https://doi.org/10.1038/nchembio741
9 M. J. Schnitzer, K. Visscher, and S. M. Block, Force production by single kinesin motors, Nat. Cell Biol. 2(10), 718 (2000)
https://doi.org/10.1038/35036345
10 S. Liepelt and R. Lipowsky, Kinesin’s network of chemomechanical motor cycles, Phys. Rev. Lett. 98(25), 258102 (2007)
https://doi.org/10.1103/PhysRevLett.98.258102
11 S. Liepelt and R. Lipowsky, Steady-state balance conditions for molecular motor cycles and stochastic nonequilibrium processes, EPL 77(5), 50002 (2007)
https://doi.org/10.1209/0295-5075/77/50002
12 Z. S. Wang, M. Feng, W. W. Zheng, and D. G. Fan, Kinesin is an evolutionarily fine-tuned molecular ratchetand- pawl device of decisively locked directionality, Biophys. J. 93(10), 3363 (2007)
https://doi.org/10.1529/biophysj.107.108233
13 D. G. Fan, W. W. Zheng, R. Hou, F. Li, and Z. S. Wang, Modelling motility of the kinesin dimer from molecular properties of individual monomers, Biochemistry 47(16), 4733 (2008)
https://doi.org/10.1021/bi800072p
14 R. D. Astumian, Thermodynamics and kinetics of molecular motors, Biophys. J. 98(11), 2401 (2010)
https://doi.org/10.1016/j.bpj.2010.02.040
15 R. D. Astumian, Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines, Biophys. J. 108(2), 291 (2015)
https://doi.org/10.1016/j.bpj.2014.11.3459
16 J. Ren, Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis, Front. Phys. 12(6), 120505 (2017)
https://doi.org/10.1007/s11467-017-0658-x
17 B. E. Clancy, W. M. Behnke-Parks, J. O. L. Andreasson, S. S. Rosenfeld, and S. M. Block, A universal pathway for kinesin stepping, Nat. Struct. Mol. Biol. 18(9), 1020 (2011)
https://doi.org/10.1038/nsmb.2104
18 R. A. Cross, The kinetic mechanism of kinesin, Trends Biochem. Sci. 29(6), 301 (2004)
https://doi.org/10.1016/j.tibs.2004.04.010
19 B. Milic, J. O. L. Andreasson, W. O. Hancock, and S. M. Block, Kinesin processivity is gated by phosphate release, Proc. Natl. Acad. Sci. USA 111(39), 14136 (2014)
https://doi.org/10.1073/pnas.1410943111
20 K. J. Mickolajczyk, N. C. Deffenbaugh, J. Ortega Arroyo, J. Andrecka, P. Kukura, and W. O. Hancock, Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle, Proc. Natl. Acad. Sci. USA 112(52), E7186 (2015)
https://doi.org/10.1073/pnas.1517638112
21 G. Y. Chen, D. F. J. Arginteanu, and W. O. Hancock, Processivity of the kinesin-2 KIF3A results from rear head gating and not front head gating, J. Biol. Chem. 290(16), 10274 (2015)
https://doi.org/10.1074/jbc.M114.628032
22 A. Efremov and Z. S. Wang, Universal optimal working cycles of molecular motors, Phys. Chem. Chem. Phys. 13(13), 6223 (2011)
https://doi.org/10.1039/c0cp02118k
23 U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem, Phys. Rev. Lett. 95(4), 040602 (2005)
https://doi.org/10.1103/PhysRevLett.95.040602
24 J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Mod. Phys. 48(4), 571 (1976)
https://doi.org/10.1103/RevModPhys.48.571
25 M. Rubinstein and R. H. Colby, Polymer Physics, Oxford: Oxford University Press, 2003
26 I. Schwaiger, C. Sattler, D. R. Hostetter, and M. Rief, The myosin coiled-coil is a truly elastic protein structure, Nat. Mater. 1(4), 232 (2002)
https://doi.org/10.1038/nmat776
27 R. Yasuda, H. Noji, K. Jr Kinosita, and M. Yoshida, F1− ATPase is a highly efficient molecular motor that rotates with discrete 120° steps, Cell 93(7), 1117 (1998)
https://doi.org/10.1016/S0092-8674(00)81456-7
28 S. Toyabe, T. Watanabe-Nakayama, T. Okamoto, S. Kudo, and E. Muneyuki, Thermodynamic efficiency and mechanochemical coupling of F-1-ATPase, Proc. Natl. Acad. Sci. USA 108(44), 17951 (2011)
https://doi.org/10.1073/pnas.1106787108
29 S. Toyabe and E. Muneyuki, Single molecule thermodynamics of ATP synthesis by F-1-ATPase, New J. Phys. 17(1), 015008 (2015)
https://doi.org/10.1088/1367-2630/17/1/015008
30 R. Z. Hou and Z. S. Wang, Role of directional fidelity in multiple aspects of extreme performance of the F-1- ATPase motor, Phys. Rev. E 88(2), 022703 (2013)
https://doi.org/10.1103/PhysRevE.88.022703
31 Z. S. Wang, R. Z. Hou, and A. Efremov, Directional fidelity of nanoscale motors and particles is limited by the 2nd law of thermodynamics-Via a universal equality, J. Chem. Phys. 139(3), 035105 (2013)
https://doi.org/10.1063/1.4813626
32 Z. S. Wang, Synergic mechanism and fabrication target for bipedal nanomotors, Proc. Natl. Acad. Sci. USA 104(46), 17921 (2007)
https://doi.org/10.1073/pnas.0703639104
33 J. Cheng, S. Sreelatha, R. Z. Hou, A. Efremov, R. C. Liu, J. R. C. van der Maarel, and Z. S. Wang, Bipedal nanowalker by pure physical mechanisms, Phys. Rev. Lett. 109(23), 238104 (2012)
https://doi.org/10.1103/PhysRevLett.109.238104
34 M. H. Liu, R. Z. Hou, J. Cheng, L. Y. Loh, S. Sreelatha, J. N. Tey, J. Wei, and Z. S. Wang, Autonomous synergic control of nanomotors, ACS Nano 8(2), 1792 (2014)
https://doi.org/10.1021/nn406187u
35 I. Y. Loh, J. Cheng, S. R. Tee, A. Efremov, and Z. Wang, From bistate molecular switches to self-directed trackwalking nanomotors, ACS Nano 8(10), 10293 (2014)
https://doi.org/10.1021/nn5034983
36 R. Hou, I. Y. Loh, H. Li, and Z. Wang, Mechanicalkinetic modeling of a molecular walker from a modular design principle, Phys. Rev. Appl. 7(2), 024020 (2017)
https://doi.org/10.1103/PhysRevApplied.7.024020
37 R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science 276(5314), 917 (1997)
https://doi.org/10.1126/science.276.5314.917
38 S. Uemura, H. Higuchi, A. O. Olivares, E. M. De La Cruz, and S. Ishiwata, Mechanochemical coupling of two substeps in a single myosin V motor, Nat. Struct. Mol. Biol. 11(9), 877 (2004)
https://doi.org/10.1038/nsmb806
39 N. Soga, K. Kimura, M. Jr Kinosita, Yoshida, and T. Suzuki, Perfect chemomechanical coupling of FoF1-ATP synthase, Proc. Natl. Acad. Sci. USA 114(19), 4960 (2017)
https://doi.org/10.1073/pnas.1700801114
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed