Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 135102   https://doi.org/10.1007/s11467-018-0777-z
  本期目录
Discrete Boltzmann model for implosion- and explosion-related compressible flow with spherical symmetry
Ai-Guo Xu1,2(), Guang-Cai Zhang1, Yu-Dong Zhang1,3, Pei Wang1, Yang-Jun Ying1
1. National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing 100088, China
2. Center for Applied Physics and Technology, MOE Key Center for High Energy Density Physics Simulations, College of Engineering, Peking University, Beijing 100871, China
3. Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China
 全文: PDF(6562 KB)  
Abstract

To kinetically model implosion- and explosion-related phenomena, we present a theoretical framework for constructing a discrete Boltzmann model (DBM) with spherical symmetry in spherical coordinates. To achieve this goal, a key technique is to use localCartesian coordinates to describe the particle velocity in the kinetic model. Therefore, geometric effects, such as divergence and convergence, are described as a “force term”. To better access the nonequilibrium behavior, even though the corresponding hydrodynamic model is one-dimensional, the DBM uses a discrete velocity model (DVM) with three dimensions. A new scheme is introduced so that the DBM can use the same DVM regardless of whether or not there are extra degrees of freedom. As an example, a DVM with 26 velocities is formulated to construct the DBM at the Navier–Stokes level. Via the DBM, one can study simultaneously the hydrodynamic and thermodynamic nonequilibrium behaviors in implosion and explosion processes that are not very close to the spherical center. The extension of the current model to a multiple-relaxation-time version is straightforward.

Key wordsdiscrete Boltzmann model    compressible flows    spherical symmetry    geometric effects    thermodynamic nonequilibrium
收稿日期: 2017-12-13      出版日期: 2018-05-25
Corresponding Author(s): Ai-Guo Xu   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 135102.
Ai-Guo Xu, Guang-Cai Zhang, Yu-Dong Zhang, Pei Wang, Yang-Jun Ying. Discrete Boltzmann model for implosion- and explosion-related compressible flow with spherical symmetry. Front. Phys. , 2018, 13(5): 135102.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0777-z
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/135102
1 J. Buckmaster, T. L. Jackson, and A. Kumar, Combustion in High-Speed Flows, Springer Netherlands, 1994
https://doi.org/10.1007/978-94-011-1050-1
2 L. F. Wang, W. H. Ye, X. T. He, J. F. Wu, Z. F. Fan, C. Xue, H. Y. Guo, W. Y. Miao, Y. T. Yuan, J. Q. Dong, G. Jia, J. Zhang, Y. J. Li, J. Liu, M. Wang, Y. K. Ding, and W. Y. Zhang, Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions, Sci. China Phys. Mech. Astron. 60(5), 055201 (2017)
https://doi.org/10.1007/s11433-017-9016-x
3 A. G. Xu, G. C. Zhang, Y. J. Ying, and C. Wang, Complex fields in heterogeneous materials under shock: modeling, simulation and analysis, Sci. China Phys. Mech. Astron. 59(5), 650501 (2016)
https://doi.org/10.1007/s11433-016-5801-0
4 Z. H. Li and H. X. Zhang, Study on gas kinetic unified algorithm for flows from rarefied transition to continuum, J. Comput. Phys. 193(2), 708 (2004)
https://doi.org/10.1016/j.jcp.2003.08.022
5 Z. H. Li, A. P. Peng, H. X. Zhang, and J. Y. Yang, Rarefied gas flow simulations using high-order gaskinetic unified algorithms for Boltzmann model equations, Prog. Aerosp. Sci. 74, 81 (2015)
https://doi.org/10.1016/j.paerosci.2014.12.002
6 A. P. Peng, Z. H. Li, J. L. Wu, X. Y. Jiang, Validation and analysis of gas-kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation, Acta Physica Sinica 66(20), 204703 (2017)
7 Z. H. Li, A. P. Peng, F. Fang, S. X. Li, and S. Y. Zhang, Gas-kinetic unified algorithm for hypersonic aerothermodynamics covering various flow regimes solving Boltzmann model equation, Acta Physica Sinica 64(22), 204703 (2015)
8 Z. Li, X. Jiang, J. Wu, A. Peng, Gas-kinetic unified algorithm for Boltzmann model equation in rotational nonequilibrium and its application to the whole range flow regimes, Chin. J. Theor. Appl. Mech. 46(3), 336 (2014)
9 W. Lei, J. M. Reese, and Y. Zhang, Solving the Boltzmann equation deterministically by the fast spectral method: Application to gas microflows, J. Fluid Mech. 746(746), 53 (2014)
10 L. Wu, J. Zhang, J. M. Reese, and Y. Zhang, A fast spectral method for the Boltzmann equation for monatomic gas mixtures, J. Comput. Phys. 298(C), 602 (2015)
https://doi.org/10.1016/j.jcp.2015.06.019
11 J. Li, C. Zhong, Y. Wang, and C. Zhuo, Implementation of dual time-stepping strategy of the gas-kinetic scheme for unsteady flow simulations, Phys. Rev. E 95(5), 053307 (2017)
https://doi.org/10.1103/PhysRevE.95.053307
12 Y. Zhu, C. Zhong, and K. Xu, Implicit unified gaskinetic scheme for steady state solutions in all flow regimes, J. Comput. Phys. 315, 16 (2016)
https://doi.org/10.1016/j.jcp.2016.03.038
13 G. H. Tang, Y. H. Zhang, X. J. Gu, and D. R. Emerson, Lattice Boltzmann modelling Knudsen layer effect in non-equilibrium flows, EPL 83(4), 40008 (2008)
https://doi.org/10.1209/0295-5075/83/40008
14 G. H. Tang, Y. H. Zhang, and D. R. Emerson, Lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E 77(4), 046701 (2008)
https://doi.org/10.1103/PhysRevE.77.046701
15 G. H. Tang, X. J. Gu, R. W. Barber, D. R. Emerson, and Y. H. Zhang, Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow, Phys. Rev. E 78(2), 026706 (2008)
https://doi.org/10.1103/PhysRevE.78.026706
16 J. Meng, Y. Zhang, Kinetic diffuse boundary condition for high-order lattice Boltzmann model with streamingcollision mechanism, J. Comput. Phys. 258, 601 (2014)
https://doi.org/10.1016/j.jcp.2013.10.057
17 J. Meng and Y. Zhang, Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows, Phys. Rev. E 83(3 Pt 2), 036704 (2011)
https://doi.org/10.1103/PhysRevE.83.036704
18 J. Meng, Y. Zhang, and X. Shan, Multiscale lattice Boltzmann approach to modeling gas flows, Phys. Rev. E 83(4 Pt 2), 046701 (2010)
19 J. P. Meng, N. Dongari, J. M. Reese, and Y. Zhang, A kinetic switching criterion for hybrid modelling of multiscale gas flows, J. Phys. Confer. Ser. 362(1), 12006 (2012)
https://doi.org/10.1088/1742-6596/362/1/012006
20 J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718(3), 347 (2013)
https://doi.org/10.1017/jfm.2012.616
21 K. Xu and J. C. Huang, A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows, Academic Press Professional, Inc., 2010
22 K. Xu and J. C. Huang, An improved unified gas-kinetic scheme and the study of shock structures, IMA J. Appl. Math. 76(5), 698 (2011)
https://doi.org/10.1093/imamat/hxr002
23 J. C. Huang, K. Xu, and P. Yu, A unified gas-kinetic scheme for continuum and rarefied flows ii: multidimensional cases, Commun. Comput. Phys. 12(03), 662 (2012)
https://doi.org/10.4208/cicp.030511.220911a
24 A. Xu, G. Zhang, and Y. Zhang, Discrete Boltzmann modeling of compressible flows, Chapter 2, in: Kinetic Theory, edited by G. Z. Kyzas and A. C. Mitropoulos, Croatia: InTech, 2018
https://doi.org/10.5772/intechopen.70748
25 A. G. Xu, G. C. Zhang, and Y. J. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Physica Sinica 64 64(18), 184701 (2015)
26 C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice Boltzmann modeling of compressible flows, Phys. Rev. E 89(1), 013307 (2014)
https://doi.org/10.1103/PhysRevE.89.013307
27 A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice Boltzmann kinetic model for combustion, Phys. Rev. E 91(4), 043306 (2015)
https://doi.org/10.1103/PhysRevE.91.043306
28 Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)
https://doi.org/10.1039/C5SM01125F
29 H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows, Phys. Rev. E 94(2), 023106 (2016)
https://doi.org/10.1103/PhysRevE.94.023106
30 C. Lin, A. Xu, G. Zhang, and Y. Li, Doubledistribution- function discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)
https://doi.org/10.1016/j.combustflame.2015.11.010
31 Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)
https://doi.org/10.1016/j.combustflame.2016.04.003
32 Y. Zhang, A. Xu, G. Zhang, and Z. Chen, Discrete Boltzmann method with Maxwell-type boundary condition for slip flow, Commum. Theor. Phys. 69(1), 77 (2018)
https://doi.org/10.1088/0253-6102/69/1/77
33 Y. Gan, A. Xu, G. Zhang, and H. Lai, Threedimensional discrete Boltzmann models for compressible flows in and out of equilibrium, Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 232(3), 477 (2018)
https://doi.org/10.1177/0954406217742181
34 C. Lin, A. Xu, G. Zhang, K. Luo, and Y. Li, Discrete Boltzmann modeling of Rayleigh-Taylor instability in bi-component compressible flows, Phys. Rev. E 96(5), 053305 (2017)
https://doi.org/10.1103/PhysRevE.96.053305
35 C. Lin, K. Luo, L. Fei, and S. Succi, A multi-component discrete Boltzmann model for nonequilibrium reactive flows, Sci. Rep. 7(1), 14580 (2017)
https://doi.org/10.1038/s41598-017-14824-9
36 Y. Zhang, A. Xu, G. Zhang, Z. Chen, and P. Wang, Discrete ellipsoidal statistical BGK model and Burnett equations, Front. Phys. 13(3), 135101 (2018)
https://doi.org/10.1007/s11467-018-0749-3
37 M. La Rocca, A. Montessori, P. Prestininzi, and S. Succi, A multispeed discrete Boltzmann model for transcritical 2d shallow water flows, J. Comput. Phys. 284(C), 117 (2015)
https://doi.org/10.1016/j.jcp.2014.12.029
38 S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York: Oxford University Press, 2001
39 S. Toppaladoddi, S. Succi, and J. S. Wettlaufer, Roughness as a route to the ultimate regime of thermal convection, Phys. Rev. Lett. 118(7), 074503 (2017)
https://doi.org/10.1103/PhysRevLett.118.074503
40 X. Shan, X. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: A way beyond the Navier- Stokes equation, J. Fluid Mech. 550, 413 (2006)
https://doi.org/10.1017/S0022112005008153
41 J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718(3), 347 (2013)
https://doi.org/10.1017/jfm.2012.616
42 D. Sun, M. Zhu, S. Pan, and D. Raabe, Lattice Boltzmann modeling of dendritic growth in a forced melt convection, Acta Mater. 57(6), 1755 (2009)
https://doi.org/10.1016/j.actamat.2008.12.019
43 Y. Wang, C. Shu, H. B. Huang, and C. J. Teo, Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio, J. Comput. Phys. 280(C), 404 (2015)
https://doi.org/10.1016/j.jcp.2014.09.035
44 Z. Chai, C. Huang, B. Shi, and Z. Guo, A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media, Int. J. Heat Mass Transfer 98, 687 (2016)
https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.065
45 H. Liu, L. Wu, Y. Ba, and G. Xi, A lattice Boltzmann method for axisymmetric thermocapillary flows, International Journal of Heat & Mass Transfer 104, 337 (2017)
https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.068
46 L. Chen, L. Zhang, Q. Kang, H. S. Viswanathan, J. Yao, and W. Tao, Nanoscale simulation of shale transport properties using the lattice Boltzmann method: Permeability 445 and diffusivity, Sci. Rep. 5(1), 8089 (2015)
https://doi.org/10.1038/srep08089
47 C. Zhuo, C. Zhong, and J. Cao, Filter-matrix lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E 85(4), 046703 (2012)
https://doi.org/10.1103/PhysRevE.85.046703
48 J. Meng and Y. Zhang, Diffuse reflection boundary condition for high-order lattice Boltzmann models with streaming-collision mechanism, J. Comput. Phys. 258(C), 601 (2014)
https://doi.org/10.1016/j.jcp.2013.10.057
49 L. Wang, G. Zhou, X. Wang, Q. Xiong, and W. Ge, Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method, Particuology 8(4), 379 (2010)
https://doi.org/10.1016/j.partic.2010.07.003
50 A. Doostmohammadi, T. N. Shendruk, K. Thijssen, and J. M. Yeomans, Onset of meso-scale turbulence in active nematics, Nat. Commun. 8, 15326 (2017)
https://doi.org/10.1038/ncomms15326
51 A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. J. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)
https://doi.org/10.1007/s11467-012-0269-5
52 M. Watari and M. Tsutahara, Possibility of constructing a multispeed Bhatnagar–Gross–Krook thermal model of the lattice Boltzmann method, Phys. Rev. E 70(1), 016703 (2004)
https://doi.org/10.1103/PhysRevE.70.016703
53 H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)
https://doi.org/10.1007/s11467-016-0590-5
54 H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. T. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95, 023201 (2017)
https://doi.org/10.1103/PhysRevE.95.023201
55 H. Liu, W. Kang, H. Duan, P. Zhang, and X. He, Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid, Scientia Sinica Physica Mechanica and Astronomica 47(7), 070003 (2017)
https://doi.org/10.1360/SSPMA2016-00405
56 F. Chen, A. G. Xu, G. C. Zhang, and Y. L. Wang, Two-dimensional MRT LB model for compressible and incompressible flows, Front. Phys. 9(2), 246 (2014)
https://doi.org/10.1007/s11467-013-0368-y
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed