Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (3): 138109   https://doi.org/10.1007/s11467-018-0782-2
  本期目录
Two-dimensional aluminum monoxide nanosheets: A computational study
Shiru Lin1, Yanchao Wang2, Zhongfang Chen1()
1. Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA
2. State Key Lab of Superhard Materials, Jilin University, Changchun 130012, China
 全文: PDF(6035 KB)  
Abstract

By means of density functional theory (DFT) computations and particle-swarm optimization (PSO) structure searches, we herein predict five low-lying energy structures of two-dimensional (2D) aluminum monoxide (AlO) nanosheets. Their high cohesive energy, absence of imaginary phonon dispersion, and good thermal stability make them feasible targets for experimental realization. These monolayers exhibit diverse structural topologies, for instance, PmA- and Pmm-AlO possess buckled four- and sixmembered AlO rings, whereas P62-, PmB-, and P6m-AlO have pores of varied sizes. Interestingly, the most energetically preferred monolayers, PmA- and Pmm-AlO, feature wide band gaps (2.45 and 5.13 eV, respectively), which are promising for green and blue light-emitting devices (LEDs) and photodetectors.

Key words2D materials    density functional calculations    particle swarm optimization    wide-band-gap semiconductor
收稿日期: 2018-03-13      出版日期: 2018-05-09
Corresponding Author(s): Zhongfang Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(3): 138109.
Shiru Lin, Yanchao Wang, Zhongfang Chen. Two-dimensional aluminum monoxide nanosheets: A computational study. Front. Phys. , 2018, 13(3): 138109.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0782-2
https://academic.hep.com.cn/fop/CN/Y2018/V13/I3/138109
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
3 C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
4 K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
5 S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100(1), 016602 (2008)
https://doi.org/10.1103/PhysRevLett.100.016602
6 F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
https://doi.org/10.1038/nnano.2010.89
7 A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional xene sheets, Nat. Mater. 16(2), 163 (2017)
https://doi.org/10.1038/nmat4802
8 Q. Tang and Z. Zhou, Graphene-analogous lowdimensional materials, Prog. Mater. Sci. 58(8), 1244 (2013)
https://doi.org/10.1016/j.pmatsci.2013.04.003
9 K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
https://doi.org/10.1126/science.aac9439
10 S. Lin, J. Gu, Y. Wang, Y. Wang, S. Zhang, X. Liu, H. Zeng, and Z. Chen, Porous silaphosphorene, silaarsenene and silaantimonene: A sweet marriage of Si and P/As/Sb, J. Mater. Chem. A 6(8), 3738 (2018)
https://doi.org/10.1039/C7TA10466A
11 G. Wang, R. Pandey, and S. P. Karna, Atomically thin group V elemental films: theoretical investigations of antimonene allotropes, ACS Appl. Mater. Interfaces 7(21), 11490 (2015)
https://doi.org/10.1021/acsami.5b02441
12 L. Kou, C. Chen, and S. C. Smith, Phosphorene: Fabrication, properties, and applications, J. Phys. Chem. Lett. 6(14), 2794 (2015)
https://doi.org/10.1021/acs.jpclett.5b01094
13 S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
https://doi.org/10.1021/nn400280c
14 Q. Tang, Z. Zhou, and Z. Chen, Innovation and discovery of graphene-like materials via density-functional theory computations, Wiley Interdiscip. Rev. Comput. Mol. Sci. 5(5), 360 (2015)
https://doi.org/10.1002/wcms.1224
15 J. J. Zhao, H. S. Liu, Z. M. Yu, R. G. Quhe, S. Zhou, Y. Y. Wang, C. C. Liu, H. X. Zhong, N. N. Han, J. Lu, Y. G. Yao, and K. H. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)
https://doi.org/10.1016/j.pmatsci.2016.04.001
16 G. G. Guzmán-Verri and L. C. Lew Yan Voon, Electronic structure of silicon-based nanostructures, Phys. Rev. B 76(7), 075131 (2007)
https://doi.org/10.1103/PhysRevB.76.075131
17 L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, and K. Wu, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett. 109(5), 056804 (2012)
https://doi.org/10.1103/PhysRevLett.109.056804
18 P. De Padova, P. Vogt, A. Resta, J. Avila, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, T. Hirahara, T. Shirai, S. Hasegawa, M. Carmen Asensio, and G. Le Lay, Evidence of Dirac fermions in multilayer silicene, Appl. Phys. Lett. 102(16), 163106 (2013)
https://doi.org/10.1063/1.4802782
19 E. Durgun, S. Tongay, and S. Ciraci, Silicon and III-V compound nanotubes: Structural and electronic properties, Phys. Rev. B 72(7), 075420 (2005)
https://doi.org/10.1103/PhysRevB.72.075420
20 U. Röthlisberger, W. Andreoni, and M. Parrinello, Structure of nanoscale silicon clusters, Phys. Rev. Lett. 72(5), 665 (1994)
https://doi.org/10.1103/PhysRevLett.72.665
21 P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett. 108(15), 155501 (2012)
https://doi.org/10.1103/PhysRevLett.108.155501
22 S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
https://doi.org/10.1103/PhysRevLett.102.236804
23 K. Takeda and K. Shiraishi, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50(20), 14916 (1994)
https://doi.org/10.1103/PhysRevB.50.14916
24 Y. Jing, Z. Zhou, C. R. Cabrera, and Z. F. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104 (2014)
https://doi.org/10.1039/C4TA01033G
25 M. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys. 16(9), 095002 (2014)
https://doi.org/10.1088/1367-2630/16/9/095002
26 M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, Electronic properties of hydrogenated silicene and germanene, Appl. Phys. Lett. 98(22), 223107 (2011)
https://doi.org/10.1063/1.3595682
27 L. Li, S. Z. Lu, J. Pan, Z. Qin, Y. Q. Wang, Y. Wang, G. Y. Cao, S. Du, and H. J. Gao, Buckled germanene formation on Pt(111), Adv. Mater. 26(28), 4820 (2014)
https://doi.org/10.1002/adma.201400909
28 S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)
https://doi.org/10.1002/smll.201402041
29 F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)
https://doi.org/10.1038/nmat4384
30 P. Z. Tang, P. C. Chen, W. D. Cao, H. Q. Huang, S. Cahangirov, L. D. Xian, Y. Xu, S. C. Zhang, W. H. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator, Phys. Rev. B 90(12), 121408 (2014)
https://doi.org/10.1103/PhysRevB.90.121408
31 S. Rachel and M. Ezawa, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Phys. Rev. B 89(19), 195303 (2014)
https://doi.org/10.1103/PhysRevB.89.195303
32 N. Gao, H. S. Liu, S. Zhou, Y. Z. Bai, and J. J. Zhao, Interaction between post-graphene group-iv honeycomb monolayers and metal substrates: Implication for synthesis and structure control, J. Phys. Chem. C 121(9), 5123 (2017)
https://doi.org/10.1021/acs.jpcc.7b00023
33 L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)
https://doi.org/10.1038/nnano.2014.35
34 H. O. Churchill and P. Jarillo-Herrero, Phosphorus joins the family, Nat. Nanotechnol. 9(5), 330 (2014)
https://doi.org/10.1038/nnano.2014.85
35 H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)
https://doi.org/10.1021/nn501226z
36 A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, and A. H. Castro Neto, Phosphorene: From theory to applications, Nat. Rev. Mater. 1(11), 16061 (2016)
https://doi.org/10.1038/natrevmats.2016.61
37 Y. Jing, X. Zhang, and Z. Zhou, Phosphorene: What can we know from computations? Wiley Interdiscip. Rev. Comput. Mol. Sci. 6(1), 5 (2016)
https://doi.org/10.1002/wcms.1234
38 R. Fei and L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett. 14(5), 2884 (2014)
https://doi.org/10.1021/nl500935z
39 L. Wang, A. Kutana, X. Zou, and B. I. Yakobson, Electro-mechanical anisotropy of phosphorene, Nanoscale 7(21), 9746 (2015)
https://doi.org/10.1039/C5NR00355E
40 H. S. Tsai, S. W. Wang, C. H. Hsiao, C. W. Chen, H. Ouyang, Y. L. Chueh, H. C. Kuo, and J. H. Liang, Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons, Chem. Mater. 28(2), 425 (2016)
https://doi.org/10.1021/acs.chemmater.5b04949
41 S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)
https://doi.org/10.1002/anie.201411246
42 S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez- Herrero, P. Ares, F. Zamora, Z. Zhu, and H. Zeng, Recent progress in 2D group-VA semiconductors: From theory to experiment, Chem. Soc. Rev. 47(3), 982 (2018)
https://doi.org/10.1039/C7CS00125H
43 S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities, Angew. Chem. Int. Ed. 55(5), 1666 (2016)
https://doi.org/10.1002/anie.201507568
44 H. S. Tsai, C. W. Chen, C. H. Hsiao, H. Ouyang, and J. H. Liang, The advent of multilayer antimonene nanoribbons with room temperature orange light emission,Chem. Commun. 52(54), 8409 (2016)
https://doi.org/10.1039/C6CC02778D
45 P. Ares, F. Aguilar-Galindo, D. Rodriguez-San-Miguel, D. A. Aldave, S. Diaz-Tendero, M. Alcami, F. Martin, J. Gomez-Herrero, and F. Zamora, Mechanical isolation of highly stable antimonene under ambient conditions, Adv. Mater. 28(30), 6332 (2016)
https://doi.org/10.1002/adma.201602128
46 C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gomez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellan, and F. Zamora, Few-layer antimonene by liquid-phase exfoliation, Angew. Chem. Int. Ed. 55(46), 14345 (2016)
https://doi.org/10.1002/anie.201605298
47 J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7, 13352 (2016)
https://doi.org/10.1038/ncomms13352
48 J. H. Yuan, N. N. Yu, K. H. Xue, and X. S. Miao, Stability, electronic and thermodynamic properties of aluminene from first-principles calculations, Appl. Surf. Sci. 409, 85 (2017)
https://doi.org/10.1016/j.apsusc.2017.02.238
49 C. Kamal, A. Chakrabarti, and M. Ezawa, Aluminene as highly hole-doped graphene, New J. Phys. 17(8), 083014 (2015)
https://doi.org/10.1088/1367-2630/17/8/083014
50 D. C. Tyte, B2[π]-A2[σ] band system of aluminium monoxide, Nature 202(4930), 383 (1964)
https://doi.org/10.1038/202383a0
51 M. Hoch and H. L. Johnston, Formation, stability and crystal structure of the solid aluminum suboxides: Al2O and AlO1, J. Am. Chem. Soc. 76(9), 2560 (1954)
https://doi.org/10.1021/ja01638a076
52 J. Koput and K. A. Peterson, ab initio prediction of the potential energy surface and vibrational–rotational energy levels of X2A′ BeOH, J. Phys. Chem. A 107(19), 3981 (2003)
https://doi.org/10.1021/jp034292c
53 C. Dohmeier, D. Loos, and H. Schnockel, Aluminum(I) and gallium(I) compounds: Syntheses, structures, and reactions, Angew. Chem. Int. Ed. Engl. 35(2), 129 (1996)
https://doi.org/10.1002/anie.199601291
54 C. Liang, Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, J. Electrochem. Soc. 120(10), 1289 (1973)
https://doi.org/10.1149/1.2403248
55 S. Zhang, J. Yu, H. Li, D. Mao, and G. Lu, Higheffective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism, Sci. Rep. 6(1), 33196 (2016)
https://doi.org/10.1038/srep33196
56 T. T. Song, M. Yang, J. W. Chai, M. Callsen, J. Zhou, T. Yang, Z. Zhang, J. S. Pan, D. Z. Chi, Y. P. Feng, and S. J. Wang, The stability of aluminium oxide monolayer and its interface with two-dimensional materials, Sci. Rep. 6(1), 29221 (2016)
https://doi.org/10.1038/srep29221
57 M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter 14(11), 2717 (2002)
https://doi.org/10.1088/0953-8984/14/11/301
58 M. Kuisma, J. Ojanen, J. Enkovaara, and T. Rantala, Kohn-Sham potential with discontinuity for band gap materials, Phys. Rev. B 82(11), 115106 (2010)
https://doi.org/10.1103/PhysRevB.82.115106
59 I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, Computational screening of perovskite metal oxides for optimal solar light capture, Energy Environ. Sci. 5(2), 5814 (2012)
https://doi.org/10.1039/C1EE02717D
60 P. Miró, M. Ghorbani-Asl, and T. Heine, Two dimensional materials beyond MoS2: Noble-transition-metal dichalcogenides, Angew. Chem. Int. Ed. 53(11), 3015 (2014)
https://doi.org/10.1002/anie.201309280
61 H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, and X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15(1), 48 (2016)
https://doi.org/10.1038/nmat4465
62 Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
https://doi.org/10.1103/PhysRevB.82.094116
63 K. Takahashi, A. Yoshikawa and A. Sandhu, Wide bandgap Semiconductors, Berlin Heidelberg: Springer- Verlag, 239 (2007)
https://doi.org/10.1007/978-3-540-47235-3
64 M. N. Yoder, Wide bandgap semiconductor materials and devices, IEEE Trans. Electron Dev. 43(10), 1633 (1996)
https://doi.org/10.1109/16.536807
65 A. Lafond, C. Guillot-Deudon, J. Vidal, M. Paris, C. La, and S. Jobic, Substitution of Li for Cu in Cu2ZnSnS4: Toward wide band gap absorbers with low cation disorder for thin film solar cells, Inorg. Chem. 56(5), 2712 (2017)
https://doi.org/10.1021/acs.inorgchem.6b02865
66 T. P. Chow and R. Tyagi, Wide bandgap compound semiconductors for superior high-voltage unipolar power devices, IEEE Trans. Electron Dev. 41(8), 1481 (1994)
https://doi.org/10.1109/16.297751
67 J. Casady and R. W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for hightemperature applications, Solid State Electron, 39(10), 1409 (1996)
https://doi.org/10.1016/0038-1101(96)00045-7
68 P. G. Neudeck, R. S. Okojie, and L. Y. Chen, Hightemperature electronics-a role for wide bandgap semiconductors? Proc. IEEE 90(6), 1065 (2002)
https://doi.org/10.1109/JPROC.2002.1021571
69 M. Topsakal, E. Aktürk, and S. Ciraci, First-principles study of two-and one-dimensional honeycomb structures of boron nitride, Phys. Rev. B 79(11), 115442 (2009)
https://doi.org/10.1103/PhysRevB.79.115442
70 K. Watanabe, T. Taniguchi, and H. Kanda, Directbandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3(6), 404 (2004)
https://doi.org/10.1038/nmat1134
71 Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science 317(5840), 932 (2007)
https://doi.org/10.1126/science.1144216
72 E. Monroy, F. Omnès, and F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol. 18(4), R33 (2003)
https://doi.org/10.1088/0268-1242/18/4/201
73 H. Y. Lu, A. S. Cuamba, L. Geng, L. Hao, Y. M. Qi, and C. Ting, C3H2: A wide-band-gap semiconductor with strong optical absorption, Phys. Rev. B 96(16), 165420 (2017)
https://doi.org/10.1103/PhysRevB.96.165420
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed