Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 130506   https://doi.org/10.1007/s11467-018-0783-1
  本期目录
Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling
Xia Huang1,2(), Jin Dong1, Wen-Jing Jia3, Zhi-Gang Zheng3, Can Xu3()
1. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
2. Cardiovascular Research Laboratories, Departments of Medicine and Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
3. Institute of Systems Science and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
 全文: PDF(2152 KB)  
Abstract

We study the synchronization transition in the Kuramoto model by considering a unidirectional coupling with a chain structure. The microscopic clustering features are characterized in the system. We identify several clustering patterns for the long-time evolution of the effective frequencies and reveal the phase transition between them. Theoretically, the recursive approach is developed in order to obtain analytical insights; the essential bifurcation schemes of the clustering patterns are clarified and the phase diagram is illustrated in order to depict the various phase transitions of the system. Furthermore, these recursive theories can be extended to a larger system. Our theoretical analysis is in agreement with the numerical simulations and can aid in understanding the clustering patterns in the Kuramoto model with a general structure.

Key wordssynchronization    coupled phase oscillators    phase transition
收稿日期: 2018-03-22      出版日期: 2018-05-25
Corresponding Author(s): Xia Huang,Can Xu   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 130506.
Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling. Front. Phys. , 2018, 13(5): 130506.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0783-1
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/130506
1 A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Vol. 12, Cambridge: Cambridge University Press, 2003
2 S. H. Strogatz, Frontiers in Mathematical Biology, Springer, 2012, pp 122–138
3 J. A. Mohawk, C. B. Green, and J. S. Takahashi, Central and peripheral circadian clocks in mammals, Annu. Rev. Neurosci. 35(1), 445 (2012)
https://doi.org/10.1146/annurev-neuro-060909-153128
4 Z. Qu, Y. Shiferaw, and J. N. Weiss, Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study, Phys. Rev. E 75(1), 011927 (2007)
https://doi.org/10.1103/PhysRevE.75.011927
5 I. Aihara, Modeling synchronized calling behavior of Japanese tree frogs, Phys. Rev. E 80(1), 011918 (2009)
https://doi.org/10.1103/PhysRevE.80.011918
6 S. H. Strogatz, Sync: How Order Emerges from Chaos in the Universe, Nature and Daily Life, UK: Hachette, 2004
7 B. C. Daniels, S. T. M. Dissanayake, and B. R. Trees, Synchronization of coupled rotators: Josephson junction ladders and the locally coupled Kuramoto model, Phys. Rev. E 67(2), 026216 (2003)
https://doi.org/10.1103/PhysRevE.67.026216
8 Y. Kuramoto and H. Araki, Lecture notes in physics, International Symposium on Mathematical Problems in Theoretical Physics, 5 (1975)
9 J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, et al., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)
https://doi.org/10.1103/RevModPhys.77.137
10 C. Xu, J. Gao, H. Xiang, W. Jia, S. Guan, and Z. Zheng, Dynamics of phase oscillators with generalized frequency-weighted coupling, Phys. Rev. E 94(6), 062204 (2016)
https://doi.org/10.1103/PhysRevE.94.062204
11 H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu, and S. Guan, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett. 117(20), 204101 (2016)
https://doi.org/10.1103/PhysRevLett.117.204101
12 X. Huang, J. Gao, Y. Sun, Z. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)
https://doi.org/10.1007/s11467-016-0597-y
13 S. Boccaletti, J. A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, and Y. Zou, Explosive transitions in complex networks structure and dynamics: Percolation and synchronization, Phys. Rep. 660, 1 (2016)
https://doi.org/10.1016/j.physrep.2016.10.004
14 H. Chen, Y. Sun, J. Gao, Z. Zheng, and C. Xu, Order parameter analysis of synchronization transitions on star networks, Front. Phys. 12(6), 120504 (2017)
https://doi.org/10.1007/s11467-017-0651-4
15 X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88(1), 010802 (2013)
https://doi.org/10.1103/PhysRevE.88.010802
16 X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)
https://doi.org/10.1103/PhysRevLett.114.038701
17 H. Bi, Y. Li, L. Zhou, and S. Guan, Nontrivial standing wave state in frequency-weighted Kuramoto model, Front. Phys. 12(3), 126801 (2017)
https://doi.org/10.1007/s11467-017-0672-z
18 T. Qiu, Y. Zhang, J. Liu, H. Bi, S. Boccaletti, Z. Liu, and S. Guan, Landau damping effects in the synchronization of conformist and contrarian oscillators, Sci. Rep. 5(1), 18235 (2016)
https://doi.org/10.1038/srep18235
19 G. C. Sethia, A. Sen, and F. M. Atay, Clustered chimera states in delay-coupled oscillator systems, Phys. Rev. Lett. 100(14), 144102 (2008)
https://doi.org/10.1103/PhysRevLett.100.144102
20 Y. Zhu, Y. Li, M. Zhang, and J. Yang, The oscillating two-cluster chimera state in non-locally coupled phase oscillators, Europhys. Lett. 97(1), 10009 (2012)
https://doi.org/10.1209/0295-5075/97/10009
21 D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
https://doi.org/10.1103/PhysRevLett.101.084103
22 O. E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. L. Maistrenko, and O. Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators, Phys. Rev. E 85(3), 036210 (2012)
https://doi.org/10.1103/PhysRevE.85.036210
23 J. Sieber, E. Omel’chenko, and M. Wolfrum, Controlling unstable chaos: Stabilizing chimera states by feedback, Phys. Rev. Lett. 112(5), 054102 (2014)
https://doi.org/10.1103/PhysRevLett.112.054102
24 B. K. Bera, S. Majhi, D. Ghosh, and M. Perc, Chimera states: Effects of different coupling topologies, Europhys. Lett. 118(1), 10001 (2017)
https://doi.org/10.1209/0295-5075/118/10001
25 S. Rakshit, B. K. Bera, M. Perc, and D. Ghosh, Basin stability for chimera states, Sci. Rep. 7(1), 2412 (2017)
https://doi.org/10.1038/s41598-017-02409-5
26 E. Bolhasani, Y. Azizi, A. Valizadeh, and M. Perc, Synchronization of oscillators through timeshifted common inputs, Phys. Rev. E 95(3), 032207 (2017)
https://doi.org/10.1103/PhysRevE.95.032207
27 Q. Wang, Z. Duan, M. Perc, and G. Chen, Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability, Europhys. Lett. 83(5), 50008 (2008)
https://doi.org/10.1209/0295-5075/83/50008
28 Q. Wang, M. Perc, Z. Duan, and G. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E 80(2), 026206 (2009)
https://doi.org/10.1103/PhysRevE.80.026206
29 Y. Wu, J. Xiao, G. Hu, and M. Zhan, Synchronizing large number of nonidentical oscillators with small coupling, Europhys. Lett. 101, 38002 (2013)
30 X. Huang, M. Zhan, F. Li, and Z. Zheng, Single clustering synchronization in a ring of Kuramoto oscillators,J. Phys. A 47(12), 125101 (2014)
https://doi.org/10.1088/1751-8113/47/12/125101
31 P. F. C. Tilles, F. F. Ferreira, and H. A. Cerdeira, Multistable behavior above synchronization in a locally coupled Kuramoto model, Phys. Rev. E 83(6), 066206 (2011)
https://doi.org/10.1103/PhysRevE.83.066206
32 Y. Zhang and W. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
https://doi.org/10.1007/s11467-014-0426-0
33 L. Ren and B. Ermentrout, Phase locking in chains of multiple-coupled oscillators, Physica D 143(1–4), 56 (2000)
https://doi.org/10.1016/S0167-2789(00)00096-8
34 L. Ren and G. B. Ermentrout, Monotonicity of phaselocked solutions in chains and arrays of nearestneighbour coupled oscillators, SIAM J. Math. Anal. 29(1), 208 (1998)
https://doi.org/10.1137/S0036141096298837
35 J. A. Rogge and D. Aeyels, Stability of phase locking in a ring of unidirectionally coupled oscillators, J. Phys. Math. Gen. 37(46), 11135 (2004)
https://doi.org/10.1088/0305-4470/37/46/004
36 H. F. El-Nashar and H. A. Cerdeira, Determination of the critical coupling for oscillators in a ring, Chaos 19(3), 033127 (2009)
https://doi.org/10.1063/1.3212939
37 G. B. Ermentrout, The behaviour of rings of coupled oscillators, J. Math. Biol. 23(1), 55 (1985)
https://doi.org/10.1007/BF00276558
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed