Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (4): 138115   https://doi.org/10.1007/s11467-018-0785-z
  本期目录
Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure
Zhen-Zhong Yan, Zhao-Han Jiang, Jun-Peng Lu(), Zhen-Hua Ni()
School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
 全文: PDF(7127 KB)  
Abstract

Integration of heterogenous materials produces compelling physical phenomena and increased performance of optoelectronic devices. In this work, we integrate CsPbBr3 microplate with WS2 monolayer to investigate the interfacial carrier transfer mechanism in the heterojunction. The quenching of photoluminescence (PL) emission from CsPbBr3 and WS2 after heterostructure formation indicates efficient charge transfer in the junction. Low-temperature PL spectra reveal that the decreasing PL of WS2 arises from the vanishing of biexcitons. Photodetection based on the WS2/CsPbBr3 heterostructure is demonstrated. The higher performance from the junction further certifies the occurrence of charge transfer in the heterojunction.

Key wordsTMDs    inorganic perovskite    heterostructure    charge transfer
收稿日期: 2018-05-02      出版日期: 2018-06-08
Corresponding Author(s): Jun-Peng Lu,Zhen-Hua Ni   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(4): 138115.
Zhen-Zhong Yan, Zhao-Han Jiang, Jun-Peng Lu, Zhen-Hua Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys. , 2018, 13(4): 138115.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0785-z
https://academic.hep.com.cn/fop/CN/Y2018/V13/I4/138115
1 Editorial, Graphene is not alone, Nat. Nanotechnol. 7(11), 683 (2012)
https://doi.org/10.1038/nnano.2012.205
2 Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, and W. Chen, Twodimensional transition metal dichalcogenides: Interface and defect engineering, Chem. Soc. Rev. 47(9), 3100 (2018)
https://doi.org/10.1039/C8CS00024G
3 Y. Lee, X. Zhang, W. Zhang, M. Chang, C. Lin, K. Chang, Y. Yu, J. T. Wang, C. Chang, L. Li, and T. Lin, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition, Adv. Mater. 24(17), 2320 (2012)
https://doi.org/10.1002/adma.201104798
4 A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Optical generation of excitonic valley coherence in monolayer WSe2, Nat. Nanotechnol. 8(9), 634 (2013)
https://doi.org/10.1038/nnano.2013.151
5 H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)
https://doi.org/10.1038/nnano.2012.95
6 K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)
https://doi.org/10.1038/nnano.2012.96
7 T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valleyselective circular dichroism of monolayer molybdenum disulphide, Nat. Commun. 3(1), 887 (2012)
https://doi.org/10.1038/ncomms1882
8 J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions, Nat. Nanotechnol. 9(4), 268 (2014)
https://doi.org/10.1038/nnano.2014.26
9 A. Pospischil, M. M. Furchi, and T. Mueller, Solarenergy conversion and light emission in an atomic monolayer p–n diode, Nat. Nanotechnol. 9(4), 257 (2014)
https://doi.org/10.1038/nnano.2014.14
10 W. Wang, R. Du, X. Guo, J. Jiang, W. Zhao, Z. Ni, X. Wang, Y. You, and Z. Ni, Interfacial amplification for graphene-based position-sensitive-detectors, Light Sci. Appl. 6(10), e17113 (2017)
https://doi.org/10.1038/lsa.2017.113
11 J. Lu, J. H. Lu, H. Liu, B. Liu, K. X. Chan, J. Lin, W. Chen, K. P. Loh, and C. H. Sow, Improved photoelectrical properties of MoS2 films after laser micromachining, ACS Nano 8(6), 6334 (2014)
https://doi.org/10.1021/nn501821z
12 S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, Dyesensitized MoS2 photodetector with enhanced spectral photoresponse, ACS Nano 8(8), 8285 (2014)
https://doi.org/10.1021/nn502715h
13 D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, Hybrid 2D-0D MoS2- PbS quantum dot photodetectors,Adv. Mater. 27(1), 176 (2015)
https://doi.org/10.1002/adma.201402471
14 D. Jariwala, V. K. Sangwan, C. C. Wu, P. L. Prabhumirashi, M. L. Geier, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode, Proc. Natl. Acad. Sci. USA 110(45), 18076 (2013)
https://doi.org/10.1073/pnas.1317226110
15 S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun. 6(1) (2015)
16 V. K. Ravi, G. B. Markad, and A. Nag, Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X= Cl, Br, I) perovskite nanocrystals, ACS Energy Lett. 1(4), 665 (2016)
https://doi.org/10.1021/acsenergylett.6b00337
17 X. Song, X. Liu, D. Yu, C. Huo, J. Ji, X. Li, S. Zhang, Y. Zou, G. Zhu, Y. Wang, M. Wu, A. Xie, and H. Zeng, Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation, ACS Appl. Mater. Inter. 10(3), 2801 (2018)
https://doi.org/10.1021/acsami.7b14745
18 D. Kwak, D. Lim, H. Ra, P. Ramasamy, and J. Lee, High performance hybrid graphene–CsPbBr3−xIxperovskite nanocrystal photodetector, RSC Adv. 6(69), 65252 (2016)
https://doi.org/10.1039/C6RA08699C
19 H. Li, X. Zheng, Y. Liu, Z. Zhang, and T. Jiang, Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure, Nanoscale 10(4), 1650 (2018)
https://doi.org/10.1039/C7NR05542K
20 Y. Liu, H. Li, X. Zheng, X. Cheng, and T. Jiang, Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots, Opt. Mater. Express 7(4), 1327 (2017)
https://doi.org/10.1364/OME.7.001327
21 H. W. Liu, J. P. Lu, H. M. Fan, C. H. Sow, S. H. Tang, and X. H. Zhang, Temperature and composition dependence of photoluminescence dynamics in CdSxSe1−x(0≤x≤1) nanobelts, J. Appl. Phys. 111(7), 073112 (2012)
https://doi.org/10.1063/1.3702889
22 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett. 15(6), 3692 (2015)
https://doi.org/10.1021/nl5048779
23 V. D. Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun. 5, 3586 (2014)
https://doi.org/10.1038/ncomms4586
24 G. Moody, C. Kavir Dass, K. Hao, C. Chen, L. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun. 6(1), 8315 (2015)
https://doi.org/10.1038/ncomms9315
25 G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, Excitonic switches operating at around 100 K, Nat. Photonics 3(10), 577 (2009)
https://doi.org/10.1038/nphoton.2009.166
26 T. Byrnes, N. Y. Kim, and Y. Yamamoto, Exciton–polariton condensates, Nat. Phys. 10(11), 803 (2014)
27 A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. López-Urías, J. Charlier, H. Terrones, and M. Terrones, Identification of individual and few layers of WS2 using Raman spectroscopy, Sci. Rep. 3(1), 1755 (2013)
https://doi.org/10.1038/srep01755
28 J. Lu, H. Liu, E. S. Tok, and C. Sow, Interactions between lasers and two-dimensional transition metal dichalcogenides, Chem. Soc. Rev. 45(9), 2494 (2016)
https://doi.org/10.1039/C5CS00553A
29 X. Hong, J. Kim, S. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nat. Nanotechnol. 9(9), 682 (2014)
https://doi.org/10.1038/nnano.2014.167
30 G. Liu, W. Shan, Y. Yao, W. Yao, and D. Xiao, Threeband tight-binding model for monolayers of group-VIB transition metal dichalcogenides, Phys. Rev. B 88(8), 085433 (2013)
https://doi.org/10.1103/PhysRevB.88.085433
31 M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, Cesium enhances long-term stability of lead bromide perovskite-based solar cells, J. Phys. Chem. Lett. 7(1), 167 (2016)
https://doi.org/10.1021/acs.jpclett.5b02597
32 H. Liu, J. Lu, K. Ho, Z. Hu, Z. Dang, A. Carvalho, H. R. Tan, E. S. Tok, and C. H. Sow, Fluorescence concentric triangles: A case of chemical heterogeneity in WS2 atomic monolayer, Nano Lett. 16(9), 5559 (2016)
https://doi.org/10.1021/acs.nanolett.6b02111
33 M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, Biexciton emission from edges and grain boundaries of triangular WS2 monolayers, ACS Nano 10(2), 2399 (2016)
https://doi.org/10.1021/acsnano.5b07214
34 A. Venkatakrishnan, H. Chua, P. Tan, Z. Hu, H. Liu, Y. Liu, A. Carvalho, J. Lu, and C. H. Sow, Microsteganography on WS2 monolayers tailored by direct laser painting, ACS Nano 11(1), 713 (2017)
https://doi.org/10.1021/acsnano.6b07118
35 J. C. Kim, D. R. Wake, and J. P. Wolfe, Thermo dynamics of biexcitons in a GaAs quantum well, Phys. Rev. B 50(20), 15099 (1994)
https://doi.org/10.1103/PhysRevB.50.15099
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed