Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 136105   https://doi.org/10.1007/s11467-018-0787-x
  本期目录
A novel hybrid sp-sp2 metallic carbon allotrope
Qun Wei1(), Quan Zhang2, Mei-Guang Zhang3(), Hai-Yan Yan4, Li-Xin Guo1, Bing Wei1
1. School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
2. School of Microelectronics, Xidian University, Xi’an 710071, China
3. College of Physics and Optoelectronic Technology, Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji 721016, China
4. College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
 全文: PDF(2603 KB)  
Abstract

In this paper, we propose a novel hybrid sp-sp2 monoclinic carbon allotrope mC12. This allotrope is a promising light metallic material, the mechanical and electronic properties of which are studied based on first-principles calculations. The structure of this new mC12 is mechanically and dynamically stable at ambient pressure and has a low equilibrium density due to its large cell volume. Furthermore, calculations of the elastic constants and moduli reveal that mC12 has a rigid mechanical property. Finally, it exhibits metallic characteristics, owing to the mixture of sp-sp2 hybrid carbon atoms.

Key wordsmetallic carbon allotrope    first-principles calculations    mechanical and electronic    properties
收稿日期: 2018-03-10      出版日期: 2018-05-25
Corresponding Author(s): Qun Wei,Mei-Guang Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 136105.
Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope. Front. Phys. , 2018, 13(5): 136105.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0787-x
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/136105
1 H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318, 162 (1985)
https://doi.org/10.1038/318162a0
2 S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56 (1991)
https://doi.org/10.1038/354056a0
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
https://doi.org/10.1126/science.1102896
4 B. Winkler, C. J. Pickard, V. Milman, and G. Thimm, Systematic prediction of crystal structures, Chem. Phys. Lett. 337, 36 (2001)
https://doi.org/10.1016/S0009-2614(01)00126-9
5 M. Itoh, M. Kotani, H. Naito, T. Sunada, Y. Kawazoe, and T. Adschiri, New metallic carbon crystal, Phys. Rev. Lett. 102, 055703 (2009)
https://doi.org/10.1103/PhysRevLett.102.055703
6 Y. Yao, J. S. Tse, J. Sun, D. D. Klug, R. Martoňák, and T. Iitaka, Comment on “new metallic carbon crystal”, Phys. Rev. Lett. 102, 229601 (2009)
https://doi.org/10.1103/PhysRevLett.102.229601
7 X. L. Sheng, H. J. Cui, F. Ye, Q. B. Yan, Q. R. Zheng, and G. Su, Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage, J. Appl. Phys. 112, 074315 (2012)
https://doi.org/10.1063/1.4757410
8 C. He, L. Sun, C. Zhang, and J. Zhong, Two viable three-dimensional carbon semiconductors with an entirely sp2 configuration, Phys. Chem. Chem. Phys. 15, 680 (2013)
https://doi.org/10.1039/C2CP43221H
9 J. T. Wang, C. Chen, E. Wang, and Y. Kawazoe, A new carbon allotrope with six-fold helical chains in all-sp2 bonding networks, Sci. Rep. 4, 4339 (2014)
https://doi.org/10.1038/srep04339
10 G. M. Rignanese and J. C. Charlier, Hypothetical threedimensional all-sp2 carbon phase, Phys. Rev. B 78, 125415 (2008)
https://doi.org/10.1103/PhysRevB.78.125415
11 Z. L. Lv, H. L. Cui, H. Wang, X. H. Li, and G. F. Ji, Theoretical study of the elasticity, ideal strength and thermal conductivity of a pure sp2 carbon, Diamond Relat. Mater. 71, 73 (2017)
https://doi.org/10.1016/j.diamond.2016.12.005
12 Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H. K. Mao, and G. Zou, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett. 102, 175506 (2009)
https://doi.org/10.1103/PhysRevLett.102.175506
13 C. He, L. Sun, C. Zhang, X. Peng, K. Zhang, and J. Zhong, new superhard carbon phases between graphite and diamond, Solid State Commun. 152, 1560 (2012)
https://doi.org/10.1016/j.ssc.2012.05.022
14 X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106, 155703 (2011)
https://doi.org/10.1103/PhysRevLett.106.155703
15 J. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, Z. Dan, C. Ma, W. Wang, H. Su, and C. Niu, Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8, 683 (2017)
https://doi.org/10.1038/s41467-017-00817-9
16 J. T. Wang, C. Chen, and Y. Kawazoe, Lowtemperature phase transformation from graphite to sp3 orthorhombic carbon, Phys. Rev. Lett. 106, 075501 (2011)
https://doi.org/10.1103/PhysRevLett.106.075501
17 X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138, 114101 (2013)
https://doi.org/10.1063/1.4794424
18 Q. Wei, M. Zhang, H. Yan, Z. Lin, and X. Zhu, Structural, electronic and mechanical properties of Imma-carbon, EPL 107, 27007 (2014)
https://doi.org/10.1209/0295-5075/107/27007
19 K. Umemoto, R. M. Wentzcovitch, S. Saito, and T. Miyake, Body-centered tetragonal C4: A viable sp3 carbon allotrope, Phys. Rev. Lett. 104, 125504 (2010)
https://doi.org/10.1103/PhysRevLett.104.125504
20 Z. Zhao, B. Xu, X. F. Zhou, L. M. Wang, B. Wen, J. He, Z. Liu, H. T. Wang, and Y. Tian, Novel superhard carbon: C-centered orthorhombic C8, Phys. Rev. Lett. 107, 215502 (2011)
https://doi.org/10.1103/PhysRevLett.107.215502
21 C. Y. Niu, X. Q. Wang, and J. T. Wang, K6 carbon: A metallic carbon allotrope in sp3 bonding networks, J. Chem. Phys. 140, 054514 (2014)
https://doi.org/10.1063/1.4864109
22 Y. Cheng, R. Melnik, Y. Kawazoe, and B. Wen, Three dimensional metallic carbon from distorting sp3-bond, Crystal. Growth. Design. 16, 1360 (2016)
https://doi.org/10.1021/acs.cgd.5b01490
23 J. Q. Wang, C. X. Zhao, C. Y. Niu, Q. Sun, and Y. Jia, C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities, J. Phys.: Conden. Matter 28, 475402 (2016)
https://doi.org/10.1088/0953-8984/28/47/475402
24 Z. Li, F. Gao, and Z. Xu, Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: First-principles calculations, Phys. Rev. B 85, 144115 (2012)
https://doi.org/10.1103/PhysRevB.85.144115
25 M. J. Rice, A. R. Bishop, and D. K. Campbell, Unusual soliton properties of the infinite polyyne chain, Phys. Rev. Lett. 51, 2136 (1983)
https://doi.org/10.1103/PhysRevLett.51.2136
26 T. R. Chalifoux WA, Synthesis of polyynes to model the sp-carbon allotrope carbyne, Nat. Chem. 2, 967 (2010)
https://doi.org/10.1038/nchem.828
27 H. Hirai and K. I. Kondo, Modified phases of diamond formed under shock compression and rapid quenching, Science 253, 772 (1991)
https://doi.org/10.1126/science.253.5021.772
28 W. L. Mao, H. k. Mao, P. J. Eng, T. P. Trainor, M. Newville, C. C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Bonding changes in compressed superhard graphite, Science 302, 425 (2003)
https://doi.org/10.1126/science.1089713
29 Y. Wang, J. E. Panzik, B. Kiefer, and K. K. Lee, Crystal structure of graphite under room-temperature compression and decompression, Sci. Rep. 2, 520 (2012)
https://doi.org/10.1038/srep00520
30 S. Zhang, Q. Wang, X. Chen, and P. Jena, Stable threedimensional metallic carbon with interlocking hexagons, Proc. Natl. Acad. Sci. USA 110, 18809 (2013)
https://doi.org/10.1073/pnas.1311028110
31 M. Hu, M. Ma, Z. Zhao, D. Yu, and J. He, Superhard sp2-sp3 hybrid carbon allotropes with tunable electronic properties, AIP Advances 6, 055020 (2016)
https://doi.org/10.1063/1.4952426
32 Y. Y. Zhang, S. Chen, H. Xiang, and X. G. Gong, Hybrid crystalline sp2-sp3 carbon as a high-efficiency solar cell absorber, Carbon 109, 246 (2016)
https://doi.org/10.1016/j.carbon.2016.08.015
33 C. X. Zhao, C. Y. Niu, Z. J. Qin, X. Y. Ren, J. T. Wang, J. H. Cho, and Y. Jia, H18 carbon: A new metallic phase with sp2-sp3 hybridized bonding network, Sci. Rep. 6, 21879 (2016)
https://doi.org/10.1038/srep21879
34 Y. Pan, M. Hu, M. Ma, Z. Li, Y. Gao, M. Xiong, G. Gao, Z. Zhao, Y. Tian, B. Xu, and J. He, Multithreaded conductive carbon: 1D conduction in 3D carbon, Carbon 115, 584 (2017)
https://doi.org/10.1016/j.carbon.2017.01.052
35 Q. Wei, Q. Zhang, H. Yan, and M. Zhang, A new superhard carbon allotrope: Tetragonal C64, J. Mater. Sci. 52, 2385 (2017)
https://doi.org/10.1007/s10853-016-0564-6
36 X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, and B. Liu, Superhard three-dimensional carbon with metallic conductivity, Carbon 123, 311 (2017)
https://doi.org/10.1016/j.carbon.2017.07.034
37 P. D. Jarowski, M. D. Wodrich, C. S. Wannere, P. v. R. Schleyer, and K. N. Houk, How large is the conjugative stabilization of diynes? J. Am. Chem. Soc. 126, 15036 (2004)
https://doi.org/10.1021/ja046432h
38 H. Bu, M. Zhao, Y. Xi, X. Wang, H. Peng, C. Wang, and X. Liu, Is yne-diamond a super-hard material? EPL 100, 56003 (2012)
https://doi.org/10.1209/0295-5075/100/56003
39 S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49, 4111 (2011)
https://doi.org/10.1016/j.carbon.2011.05.024
40 N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Electronic structure of three-dimensional graphyne, Phys. Rev. B 62, 11146 (2000)
https://doi.org/10.1103/PhysRevB.62.11146
41 Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82, 094116 (2010)
https://doi.org/10.1103/PhysRevB.82.094116
42 Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183, 2063 (2012)
https://doi.org/10.1016/j.cpc.2012.05.008
43 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
44 W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
45 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
46 G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
47 A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78, 134106 (2008)
https://doi.org/10.1103/PhysRevB.78.134106
48 A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys. 125, 224106 (2006)
https://doi.org/10.1063/1.2404663
49 F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90, 224104 (2014)
https://doi.org/10.1103/PhysRevB.90.224104
50 R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65, 349 (1952)
https://doi.org/10.1088/0370-1298/65/5/307
51 Q. Zhang, Q. Wei, H. Yan, Q. Fan, X. Zhu, J. Zhang, and D. Zhang, Mechanical and electronic properties of P42/mnmsilicon carbides, Z. Naturforsch. A 71, 387 (2016)
https://doi.org/10.1515/zna-2015-0539
52 S. F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823 (1954)
https://doi.org/10.1080/14786440808520496
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed