Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (3): 137805   https://doi.org/10.1007/s11467-018-0790-2
  本期目录
First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices
Sajid-ur- Rehman1,2,8, Faheem K. Butt3,4(), Chuanbo Li1,5(), Bakhtiar Ul Haq6,7, Zeeshan Tariq1,2, F. Aleem8
1. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences; College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Department of Physics, Division of Science and Technology, University of Education, College Road, Township, Lahore 54770, Pakistan
4. Physik-Department, ECS, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
5. School of Science, Minzu University of China, Beijing 100081, China
6. Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
7. Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
8. Department of Physics, The University of Lahore, 1-Km Raiwind Road, Lahore 53700, Pakistan
 全文: PDF(3534 KB)  
Abstract

This study is focused on calculation of the electronic structure and optical properties of non-metal doped Sb2Se3 using the first-principles method. One and two N atoms are introduced to Sb and Se sites in a Sb2Se3 crystal. When one and two N atoms are introduced into the Sb2Se3 lattice at Sb sites, the electronic structure shows that the doping significantly modifies the bandgap of Sb2Se3 from 1.11 eV to 0.787 and 0.685 eV, respectively. When N atoms are introduced to Se sites, the material shows a metallic behavior. The static dielectric constants ε1(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 14.84, 15.54, 15.02, 18.9, and 39.29, respectively. The calculated values of the refractive index n(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 3.83, 3.92, 3.86, 4.33, and 6.21, respectively. The optical absorbance and optical conductivity curves of the crystal for N-doping at Sb sites show a significant redshift towards the short-wave infrared spectral region as compared to N-doping at Se sites. The modulation of the static refractive index and static dielectric constant is mainly dependent on the doping level. The optical properties and bandgap narrowing effect suggest that the N-doped Sb2Se3is a promising new semiconductor and can be a replacement for GaSb due to its very similar bandgap and low cost.

Key wordsSb2Se3    infrared    optical properties    solar cells    optoelectronic devices
收稿日期: 2017-04-17      出版日期: 2018-05-25
Corresponding Author(s): Faheem K. Butt,Chuanbo Li   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(3): 137805.
Sajid-ur- Rehman, Faheem K. Butt, Chuanbo Li, Bakhtiar Ul Haq, Zeeshan Tariq, F. Aleem. First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices. Front. Phys. , 2018, 13(3): 137805.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0790-2
https://academic.hep.com.cn/fop/CN/Y2018/V13/I3/137805
1 L. Etgar, Semiconductor nanocrystals as light harvesters in solar cells, Materials 6(2), 445 (2013)
https://doi.org/10.3390/ma6020445
2 D. Choi, Y. Jang, J. Lee, G. H. Jeong, D. Whang, S. W. Hwang, K. S. Cho, and S. W. Kim, Diameter-controlled and surface-modified Sb2Se3 nanowires and their photodetector performance, Sci. Rep. 4, 6714, (2014)
https://doi.org/10.1038/srep06714
3 E. El-Sayad, A. Moustafa, and S. Marzouk, Effect of heat treatment on the structural and optical properties of amorphous Sb2Se3 and Sb2Se2S thin films, Physica B 404(8–11), 1119 (2009)
https://doi.org/10.1016/j.physb.2008.11.086
4 H. Koc, A. M. Mamedov, E. Deligoz, and H. Ozisik, First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds, Solid State Sci. 14(8), 1211 (2012)
https://doi.org/10.1016/j.solidstatesciences.2012.06.003
5 O. Madelung, Semiconductors: Group IV Elements and III-V Compounds, Springer Science & Business Media, 2012
6 I. H. Kim, (Bi, Sb)2(Te, Se)3-based thin film thermoelectric generators, Mater. Lett. 43(5), 221 (2000)
https://doi.org/10.1016/S0167-577X(99)00239-6
7 J. Ma, Y. Wang, Y. Wang, Q. Chen, J. Lian, and W. Zheng, Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties, J. Phys. Chem. C 113(31), 13588 (2009)
https://doi.org/10.1021/jp902952k
8 Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D. J. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent, and J. Tang, Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries, Nat. Photonics 9(6), 409 (2015)
https://doi.org/10.1038/nphoton.2015.78
9 J. Black, E. Conwell, L. Seigle, and C. Spencer, Electrical and optical properties of some M2v−B N 3VI−B semiconductors, J. Phys. Chem. Solids 2(3), 240 (1957)
https://doi.org/10.1016/0022-3697(57)90090-2
10 P. Arun, A. Vedeshwar, and N. Mehra, Laser-induced crystallization in amorphous films of (C= S, Se, Te), potential optical storage media, J. Phys. D 32(3), 183 (1999)
https://doi.org/10.1088/0022-3727/32/3/001
11 K. Rajpure, C. Lokhande, and C. Bhosale, Effect of the substrate temperature on the properties of spray deposited Sb–Se thin films from non-aqueous medium, Thin Solid Films 311(1–2), 114 (1997)
https://doi.org/10.1016/S0040-6090(97)00415-X
12 N. Platakis and H. Gatos, Threshold and memory switching in crystalline chalcogenide materials, Phys. Status Solidi (a) 13(1), K1 (1972)
https://doi.org/10.1002/pssa.2210130136
13 P. M. Fourspring, D. M. DePoy, J. E. Jr Rahmlow, Lazo-Wasem, and E. J. Gratrix, Optical coatings for thermophotovoltaic spectral control, Appl. Opt. 45(7), 1356 (2006)
https://doi.org/10.1364/AO.45.001356
14 X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D. J. Xue, L. Lv, H. Huang, D. Niu, and J. Tang, Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells, ACS Appl. Mater. Interfaces 6(13), 10687 (2014)
https://doi.org/10.1021/am502427s
15 B. Zhou and J. J. Zhu, Microwave-assisted synthesis of Sb2Se3 submicron rods, compared with those of Bi2Te3 and Sb2Te3, Nanotechnology 20(8), 085604 (2009)
https://doi.org/10.1088/0957-4484/20/8/085604
16 M. R. Filip, C. E. Patrick, and F. Giustino, GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite, Phys. Rev. B 87(20), 205125 (2013)
https://doi.org/10.1103/PhysRevB.87.205125
17 C. E. Patrick and F. Giustino, Structural and electronic properties of semiconductor-sensitized solar-cell interfaces,Adv. Funct. Mater. 21(24), 4663 (2011)
https://doi.org/10.1002/adfm.201101103
18 R. Vadapoo, S. Krishnan, H. Yilmaz, and C. Marin, Electronic structure of antimony selenide (Sb2Se3) from GW calculations, Phys. Status Solidi B Basic Res. 248(3), 700 (2011)
https://doi.org/10.1002/pssb.201046225
19 W. Procarione and C. Wood, The optical properties of Sb2Se3-Sb2Te3, Phys. Status Solidi B 42(2), 871 (1970)
https://doi.org/10.1002/pssb.19700420245
20 F. Kosek, J. Tulka, and L. Štourač, Optical, photoelectric and electric properties of single-crystalline Sb2Se3, Czechoslovak J. Phys. B 28(3), 325 (1978)
https://doi.org/10.1007/BF01597220
21 L. Gilbert, B. Van Pelt, and C. Wood, The thermal activation energy of crystalline Sb2Se3, J. Phys. Chem. Solids 35(12), 1629 (1974)
https://doi.org/10.1016/S0022-3697(74)80175-7
22 S. Messina, M. Nair, and P. Nair, Solar cells with Sb2S3 absorber films, Thin Solid Films 517(7), 2503 (2009)
https://doi.org/10.1016/j.tsf.2008.11.060
23 Z. S. Chu’Er Chng, M. Pumera, and A. Bonanni, Doped and undoped graphene platforms: The influence of structural properties on the detection of polyphenols, Sci. Rep. 6, 20673, (2016)
https://doi.org/10.1038/srep20673
24 K. Chandrasekharan and A. Kunjomana, Growth and microindentation analysis of pure and doped Sb2Se3 crystals, Turkish J. Phys. 33(4), 209 (2009)
25 J. Choi, H. W. Lee, B. S. Kim, H. Park, S. Choi, S. Hong, and S. Cho, Magnetic and transport properties of Mn-doped Bi2Se3 and Sb2Se3, J. Magn. Magn. Mater. 304(1), e164 (2006)
https://doi.org/10.1016/j.jmmm.2006.02.041
26 S. Gautam, A. Thakur, S. Tripathi, and N. Goyal, Effect of silver doping on the electrical properties of a-Sb2Se3, J. Non-Cryst. Solids 353(13–15), 1315 (2007)
https://doi.org/10.1016/j.jnoncrysol.2006.09.066
27 J. Li, B. Wang, F. Liu, J. Yang, J. Li, J. Liu, M. Jia, Y. Lai, and Y. Liu, Preparation and characterization of Bidoped antimony selenide thin films by electrodeposition, Electrochim. Acta 56(24), 8597 (2011)
https://doi.org/10.1016/j.electacta.2011.07.042
28 D. E. Reisner and T. Pradeep, Aquananotechnology: Global Prospects, CRC Press, 2014
29 T. Duan, C. Liao, T. Chen, N. Yu, Y. Liu, H. Yin, Z. J. Xiong, and M. Q. Zhu, Single crystalline nitrogendoped InP nanowires for low-voltage field-effect transistors and photodetectors on rigid silicon and flexible mica substrates, Nano Energy 15, 293 (2015)
https://doi.org/10.1016/j.nanoen.2015.05.002
30 P. Jadaun, H. P. Nair, V. Lordi, S. R. Bank, and S. K. Banerjee, Electronic and optical properties of GaSb:N from first principles, arXiv: 1308.0363 (2013)
31 Y. Mi, S. Wang, J. Chai, J. Pan, C. Huan, Y. Feng, and C. Ong, Effect of nitrogen doping on optical properties and electronic structures of SrTiO3 films, App. Phys. Lett. 89(23), (2006)
32 S. Qin, W. Lei, D. Liu, and Y. Chen, In-situ and tunable nitrogen-doping of MoS2 nanosheets, Sci. Rep. 4, 7582, (2014)
https://doi.org/10.1038/srep07582
33 H. Wang, T. Maiyalagan, and X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications, ACS Catal. 2(5), 781 (2012)
https://doi.org/10.1021/cs200652y
34 X. Li, et al., Multifunctional single-phase photocatalysts: Extended near infrared photoactivity and reliable magnetic recyclability, Sci. Rep. 5, 15511, (2015)
https://doi.org/10.1038/srep15511
35 http://www.crystallography.net/cod/9007437.html
36 N. Tideswell, F. Kruse, and J. McCullough, The crystal structure of antimony selenide, Sb2Se3, Acta Crystallogr. 10(2), 99 (1957)
https://doi.org/10.1107/S0365110X57000298
37 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. Cryst. Mater. 220(5/6), 567 (2005)
https://doi.org/10.1524/zkri.220.5.567.65075
38 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
39 N. Kuganathan, Antimony selenide crystals encapsulated within single walled carbon nanotubes-A DFT study, J. Chem. 6(S1), S147 (2009)
https://doi.org/10.1155/2009/837807
40 W. Li, X. Y. Wei, J. X. Zhu, C. Ting, and Y. Chen, Pressure-induced topological quantum phase transition in Sb2Se3, Phys. Rev. B 89(3), 035101 (2014)
https://doi.org/10.1103/PhysRevB.89.035101
41 W. Liu, X. Peng, C. Tang, L. Sun, K. Zhang, and J. Zhong, Anisotropic interactions and strain-induced topological phase transition in Sb2Se3 and Bi2Se3, Phys. Rev. B 84(24), 245105 (2011)
https://doi.org/10.1103/PhysRevB.84.245105
42 R. Vadapoo, S. Krishnan, H. Yilmaz, and C. Marin, Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap, Nanotechnology 22(17), 175705 (2011)
https://doi.org/10.1088/0957-4484/22/17/175705
43 Q. Zhang, Z. Zhang, Z. Zhu, U. Schwingenschlögl, and Y. Cui, Exotic topological insulator states and topological phase transitions in Sb2Se3–Bi2Se3 heterostructures, ACS Nano 6(3), 2345 (2012)
https://doi.org/10.1021/nn2045328
44 L. Hedin and B. I. Lundqvist, Explicit local exchangecorrelation potentials, J. Phys. C 4(14), 2064 (1971)
45 B. Hammer, L. B. Hansen, and J. K. NΦrskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals, Phys. Rev. B 59(11), 7413 (1999)
https://doi.org/10.1103/PhysRevB.59.7413
46 J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)
https://doi.org/10.1103/PhysRevB.46.6671
47 J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100(13), 136406 (2008)
https://doi.org/10.1103/PhysRevLett.100.136406
48 V. L. Deringer, R. P. Stoffel, M. Wuttig, and R. Dronskowski, Vibrational properties and bonding nature of Sb2Se3 and their implications for chalcogenide materials, Chem. Sci. 6(9), 5255 (2015)
https://doi.org/10.1039/C5SC00825E
49 C. Chen, D. C. Bobela, Y. Yang, S. Lu, K. Zeng, C. Ge, B. Yang, L. Gao, Y. Zhao, M. C. Beard, and J. Tang, Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics, Front. Optoelectron. 10(1), 18 (2017)
https://doi.org/10.1007/s12200-017-0702-z
50 C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han, and J. Tang, Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation, Appl. Phys. Lett. 107(4), 043905 (2015)
https://doi.org/10.1063/1.4927741
51 G. Y. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures, J. Phys. Chem. C 112(3), 672 (2008)
https://doi.org/10.1021/jp076883z
52 P. J. Hasnip, K. Refson, M. I. Probert, J. R. Yates, S. J. Clark, and C. J. Pickard, Density functional theory in the solid state, Phil. Trans. R. Soc. A 372 (2011), 20130270 (2014)
53 S. Xuechu, Semiconductor Spectra and Optical Properties, 2nd Ed., Beijing: Science Press, 1992
54 Z. H. Levine and D. C. Allan, Linear optical response in silicon and germanium including self-energy effects, Phys. Rev. Lett. 63(16), 1719 (1989)
https://doi.org/10.1103/PhysRevLett.63.1719
55 K. C. Krogman, T. Druffel, and M. K. Sunkara, Antireflective optical coatings incorporating nanoparticles, Nanotechnology 16(7), S338 (2005)
https://doi.org/10.1088/0957-4484/16/7/005
56 J. Liu and M. Ueda, High refractive index polymers: Fundamental research and practical applications, J. Mater. Chem. 19(47), 8907 (2009)
https://doi.org/10.1039/b909690f
57 M. Ma, F. W. Mont, D. J. Poxson, J. Cho, E. F. Schubert, R. E. Welser, and A. K. Sood, Enhancement of photovoltaic cell response due to high-refractive-index encapsulants, J. Appl. Phys. 108(4), 043102 (2010)
https://doi.org/10.1063/1.3466980
58 F. W. Mont, J. K. Kim, M. F. Schubert, E. F. Schubert, and R. W. Siegel, High-refractiveindex TiO2-nanoparticle-loaded encapsulants for lightemitting diodes, J. Appl. Phys. 103(8), 083120 (2008)
https://doi.org/10.1063/1.2903484
59 B. Ung, A. Dupuis, K. Stoeffler, C. Dubois, and M. Skorobogatiy, High-refractive-index composite materials for terahertz waveguides: Trade-off between index contrast and absorption loss, JOSA B 28(4), 917 (2011)
https://doi.org/10.1364/JOSAB.28.000917
60 H. Maghraoui-Meherzi, T. B. Nasr, N. Kamoun, and M. Dachraoui, Structural, morphology and optical properties of chemically deposited Sb2S3 thin films, Physica B 405(15), 3101 (2010)
https://doi.org/10.1016/j.physb.2010.04.020
61 K. Aly, A. Abousehly, M. Osman, and A. Othman, Structure, optical and electrical properties of Ge30Sb10Se60 thin films, Physica B 403(10–11), 1848 (2008)
https://doi.org/10.1016/j.physb.2007.10.019
62 D. Harea, M. Iovu, O. Iaseniuc, E. Colomeico, A. Meshalkin, and M. Iovu, Modification of the optical constants in amorphous Sb2Se3:Sn thin films under the illumination and heat treatment, J. Optoelectron. Adv. Mater. 11(12), 2039 (2009)
63 C. Zhang, Y. Jia, Y. Jing, Y. Yao, J. Ma, and J. Sun, DFT study on electronic structure and optical properties of N-doped, S-doped, and N/S co-doped SrTiO3, Physica B 407(24), 4649 (2012)
https://doi.org/10.1016/j.physb.2012.08.038
64 A. SAEED, Ag3SbS3 and Sb2Se3 crystal as potential absorbers for photovoltaic application: DFT study mohammed lawal, ahmad radzi mat isah and muhammad, Proceeding of 2nd International Science Postgraduate Conference 2014 (ISPC2014)© Faculty of Science, Universiti Teknologi Malaysia
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed