Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (4): 136106   https://doi.org/10.1007/s11467-018-0792-0
  本期目录
Novel single-walled carbon nanotubes periodically embedded with four- and eight-membered rings
Xiao-Ning Wang1, Jun-Zhe Lu1,2(), Heng-Jiang Zhu1,2(), Fang-Fang Li1, Miao-Miao Ma1, Gui-Ping Tan1
1. College of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China
2. Key Laboratory of Mineral Luminescence Materials and Microstructures of Xinjiang Uygur Autonomous Region, Urumqi 830054, China
 全文: PDF(6085 KB)  
Abstract

Based on experimental results, we obtain five types of single-walled carbon nanotube (SWNT) clusters with different chirality indices and diameters using density functional theory (DFT). We then obtain the corresponding SWNTs by using periodic boundary conditions. Studies of the stability and electronic properties show that the stability of the novel SWNTs is independent of the chirality index and relates only to the tube diameter; larger diameters correspond to more stable SWNTs. The electronic properties all show metallic characteristics independent of the chirality indices and tube diameters, thereby promoting the application of metallic-type SWNTs.

Key wordsfour- and eight-membered rings    novel SWNTs    stability    electronic properties
收稿日期: 2017-12-21      出版日期: 2018-06-08
Corresponding Author(s): Jun-Zhe Lu,Heng-Jiang Zhu   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(4): 136106.
Xiao-Ning Wang, Jun-Zhe Lu, Heng-Jiang Zhu, Fang-Fang Li, Miao-Miao Ma, Gui-Ping Tan. Novel single-walled carbon nanotubes periodically embedded with four- and eight-membered rings. Front. Phys. , 2018, 13(4): 136106.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0792-0
https://academic.hep.com.cn/fop/CN/Y2018/V13/I4/136106
1 S. I. Yengejeh, S. A. Kazemi, and A. Öchsner, Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review, Compos. Part B Eng. 86, 95 (2016)
https://doi.org/10.1016/j.compositesb.2015.10.006
2 Y. Cao, S. Cong, X. Cao, F. Wu, Q. Liu, M. R. Amer, and C. Zhou, Review of electronics based on singlewalled carbon nanotubes, Top. Curr. Chem. 375(5), 75 (2017)
https://doi.org/10.1007/s41061-017-0160-5
3 F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J. Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature 510(7506), 522 (2014)
https://doi.org/10.1038/nature13434
4 Y. Tang, J. Lu, D. Liu, X. Yan, C. Yao, and H. Zhu, Structural derivative and electronic property of armchair carbon nanotubes from carbon clusters, Journal of Nanomaterials2017 (2017)
https://doi.org/10.1155/2017/7601869
5 J. Liu, J. Lu, X. Lin, Y. Tang, Y. Liu, T. Wang, and H. Zhu, The electronic properties of chiral carbon nanotubes, Comput. Mater. Sci. 129, 290 (2017)
https://doi.org/10.1016/j.commatsci.2016.12.035
6 Y. N. Liu, J. Z. Lu, H. J. Zhu, Y. C. Tang, X. Lin, J. Liu, and T. Wang, Derivative and electronic properties of zigzag carbon nanotubes, Acta Physica Sinica 66(9), 093601 (2017)
7 S. Liu and X. Guo, Functional single-walled carbon nanotube-based molecular devices, Acta Chimi. Sin. 71(04), 478 (2013)
https://doi.org/10.6023/A13010024
8 I. V. Zaporotskova, N. P. Boroznina, Y. N. Parkhomenko, and L. V. Kozhitov, Carbon nanotubes: Sensor properties, a review, Modern Electronic Materials 2(4), 95 (2016)
https://doi.org/10.1016/j.moem.2017.02.002
9 M. Sheikhpour, A. Golbabaie, and A. Kasaeian, Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment, Mater. Sci. Eng. C 76(November), 1289 (2017)
https://doi.org/10.1016/j.msec.2017.02.132
10 M. V. Chernysheva, E. A. Kiseleva, N. I. Verbitskii, A. A. Eliseev, A. V. Lukashin, Y. D. Tretyakov, S. V. Savilov, N. A. Kiselev, O. M. Zhigalina, A. S. Kumskov, A. V. Krestinin, and J. L. Hutchison, The electronic properties of SWNTs intercalated by electron acceptors, Physica E 40(7), 2283 (2008)
https://doi.org/10.1016/j.physe.2007.10.070
11 T. Tanaka, H. Jin, Y. Miyata, and H. Kataura, Highyield separation of metallic and semiconducting singlewall carbon nanotubes by agarose gel electrophoresis, Appl. Phys. Express 1(11), 1140011 (2008)
12 F. Zhang, P. X. Hou, C. Liu, B. W. Wang, H. Jiang, M. L. Chen, D. M. Sun, J. C. Li, H. T. Cong, E. I. Kauppinen, and H. M. Cheng, Growth of semiconducting single-wall carbon nanotubes with a narrow bandgap distribution, Nat. Commun. 7, 1 (2016)
13 I. Yahya, F. Bonaccorso, S. K. Clowes, A. C. Ferrari, and S. R. P. Silva, Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography, Carbon 93, 574 (2015)
https://doi.org/10.1016/j.carbon.2015.05.036
14 H. Liu, Y. Feng, T. Tanaka, Y. Urabe, and H. Kataura, Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel,J. Phys. Chem. C 114(20), 9270 (2010)
https://doi.org/10.1021/jp1017136
15 F. Yang, X. Wang, D. Zhang, K. Qi, J. Yang, Z. Xu, M. Li, X. Zhao, X. Bai, and Y. Li, Growing zigzag (16, 0) carbon nanotubes with structure-defined catalysts, J. Am. Chem. Soc. 137(27), 8688 (2015)
https://doi.org/10.1021/jacs.5b04403
16 F. Yang, X. Wang, M. Li, X. Liu, X. Zhao, D. Zhang, Y. Zhang, J. Yang, and Y. Li, Templated synthesis of single-walled carbon nanotubes with specific structure, Acc. Chem. Res. 49(4), 606 (2016)
https://doi.org/10.1021/acs.accounts.5b00485
17 H. Terrones, M. Terrones, E. Hernández, N. Grobert, J. C. Charlier, and P. M. Ajayan, New metallic allotropes of planar and tubular carbon, Phys. Rev. Lett. 84(8), 1716 (2000)
https://doi.org/10.1103/PhysRevLett.84.1716
18 L. P. Biró, G. I. Márk, Z. E. Horváth, K. Kertész, J. Gyulai, J. B. Nagy, and P. Lambin, Carbon nanoarchitectures containing non-hexagonal rings: “necklaces of pearls, Carbon 42(12–13), 2561 (2004)
https://doi.org/10.1016/j.carbon.2004.05.038
19 S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. USA 112(8), 2372 (2015)
https://doi.org/10.1073/pnas.1416591112
20 C. Liu and H. M. Cheng, Controlled growth of semiconducting and metallic single-wall carbon nanotubes, J. Am. Chem. Soc. 138(21), 6690 (2016)
https://doi.org/10.1021/jacs.6b00838
21 G. Algara-Siller, A. Santana, R. Onions, M. Suyetin, J. Biskupek, E. Bichoutskaia, and U. Kaiser, Electronbeam engineering of single-walled carbon nanotubes from bilayer graphene, Carbon 65, 80 (2013)
https://doi.org/10.1016/j.carbon.2013.07.107
22 T. Xu, Y. Zhou, X. Tan, K. Yin, L. He, F. Banhart, and L. Sun, Creating the smallest BN nanotube from bilayer H-BN, Adv. Funct. Mater. 27(19), 1603897 (2017)
https://doi.org/10.1002/adfm.201603897
23 M. Liu, M. Liu, L. She, Z. Zha, J. Pan, S. Li, T. Li, Y. He, Z. Cai, J. Wang, Y. Zheng, X. Qiu, and D. Zhong, Graphene-like nanoribbons periodically embedded with four- and eight-membered rings, Nat. Commun. 8, 1 (2017)
https://doi.org/10.1038/ncomms14924
24 Y. L. Wang, K. H. Su, and J. P. Zhang, Studying of B, N, S, Si and P Doped (5; 5) carbon nanotubes by the density functional theory, Adv. Mat. Res.463–464, 1488 (2012)
https://doi.org/10.4028/www.scientific.net/AMR.463-464.1488
25 C. Garau, A. Frontera, D. Quiñonero, A. Costa, P. Ballester, and P. M. Deyà, Structural and energetic features of single-walled carbon nanotube junctions: A theoretical ab initio study, Chem. Phys. 303(3), 265 (2004)
https://doi.org/10.1016/j.chemphys.2004.06.022
26 J. Bai, X. C. Zeng, H. Tanaka, and J. Y. Zeng, Metallic single-walled silicon nanotubes, Proc. Natl. Acad. Sci. USA 101(9), 2664 (2004)
https://doi.org/10.1073/pnas.0308467101
27 L. Guo, X. Zheng, C. Liu, W. Zhou, and Z. Zeng, An ab initio study of cluster-assembled hydrogenated silicon nanotubes, Comput. Theor. Chem. 982, 17 (2012)
https://doi.org/10.1016/j.comptc.2011.11.053
28 M. S. Alam, F. Muttaqien, A. Setiadi, and M. Saito, First-principles calculations of hydrogen monomers and dimers adsorbed in graphene and carbon nanotubes, J. Phys. Soc. Jpn. 82(4), 1 (2013)
29 L. Qi, J. Y. Huang, J. Feng, and J. Li, In situ observations of the nucleation and growth of atomically sharp graphene bilayer edges, Carbon 48(8), 2354 (2010)
https://doi.org/10.1016/j.carbon.2010.03.018
30 J. Y. Huang, F. Ding, B. I. Yakobson, P. Lu, L. Qi, and J. Li, In situ observation of graphene sublimation and multi-layer edge reconstructions, Proc. Natl. Acad. Sci. USA 106(25), 10103 (2009)
https://doi.org/10.1073/pnas.0905193106
31 D. W. Boukhvalov and M. I. Katsnelson, Chemical functionalization of graphene, J. Phys.: Condens. Matter 21(34), 344205 (2009)
https://doi.org/10.1088/0953-8984/21/34/344205
32 A. R. Botello-Méndez, E. Cruz-Silva, F. López-Urías, B. G. Sumpter, V. Meunier, M. Terrones, and H. Terrones, Spin polarized conductance in hybrid graphene nanoribbons using 5–7 defects, ACS Nano 3(11), 3606 (2009)
https://doi.org/10.1021/nn900614x
33 Q. Q. Dai, Y. F. Zhu, and Q. Jiang, Electronic and magnetic engineering in zigzag graphene nanoribbons having a topological line defect at different positions with or without strain, J. Phys. Chem. C 117(9), 4791 (2013)
https://doi.org/10.1021/jp3068987
34 X. Peng and R. Ahuja, Symmetry breaking induced bandgap in epitaxial graphene layers on SiC, Nano Lett. 8(12), 4464 (2008)
https://doi.org/10.1021/nl802409q
35 S. Reich, L. Li, and J. Robertson, Structure and formation energy of carbon nanotube caps, Phys. Rev. B 72(16), 1654231 (2005)
https://doi.org/10.1103/PhysRevB.72.165423
36 S. Singh and A. H. Romero, Giant tunable rashba spin splitting in a two-dimensional BiSb monolayer and in BiSb/AlN heterostructures, Phys. Rev. B 95(16), 165444 (2017)
https://doi.org/10.1103/PhysRevB.95.165444
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed