Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (4): 138114   https://doi.org/10.1007/s11467-018-0795-x
  本期目录
Environmental engineering of transition metal dichalcogenide optoelectronics
Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern()
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
 全文: PDF(25604 KB)  
Abstract

The explosion of interest in two-dimensional van der Waals materials has been in many ways driven by their layered geometry. This feature makes possible numerous avenues for assembling and manipulating the optical and electronic properties of these materials. In the specific case of monolayer transition metal dichalcogenide semiconductors, the direct band gap combined with the flexibility for manipulation of layers has made this class of materials promising for optoelectronics. Here, we review the properties of these layered materials and the various means of engineering these properties for optoelectronics. We summarize approaches for control that modify their structural and chemical environment, and we give particular detail on the integration of these materials into engineered optical fields to control their optical characteristics. This combination of controllability from their layered surface structure and photonic environment provide an expansive landscape for novel optoelectronic phenomena.

Key wordstransition metal dichalcogenides    optoelectronics    van der Waals materials    heterostructures    excitons
收稿日期: 2018-02-26      出版日期: 2018-06-08
Corresponding Author(s): Nathaniel P. Stern   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(4): 138114.
Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys. , 2018, 13(4): 138114.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0795-x
https://academic.hep.com.cn/fop/CN/Y2018/V13/I4/138114
1 K. Barnham and G. Duggan, A new approach to highefficiency multi-band-gap solar cells, J. Appl. Phys. 67(7), 3490 (1990)
https://doi.org/10.1063/1.345339
2 N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Z. I. Alferov, and D. Bimberg, Quantum dot heterostructures: Fabrication, properties, lasers, Semiconductors 32(4), 343 (1998)
https://doi.org/10.1134/1.1187396
3 C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Canizo, and I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency — An overview of available materials, Sol. Energy Mater. Sol. Cells 91(4), 238 (2007)
https://doi.org/10.1016/j.solmat.2006.09.003
4 U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)
https://doi.org/10.1109/JPROC.2002.1021567
5 H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9(3), 205 (2010)
https://doi.org/10.1038/nmat2629
6 M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61(21), 2472 (1988)
https://doi.org/10.1103/PhysRevLett.61.2472
7 S. Bader and S. Parkin, Spintronics, Annu. Rev.: Condens. Matter Phys. 1(1), 71 (2010)
https://doi.org/10.1146/annurev-conmatphys-070909-104123
8 K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nat. Nanotechnol. 7(8), 494 (2012)
https://doi.org/10.1038/nnano.2012.96
9 M. Amani, P. Taheri, R. Addou, G. H. Ahn, D. Kiriya, D. H. Lien, R. M. III Ager, Wallace, and A. Javey, Recombination kinetics and effects of superacid treatment in sulfur- and selenium-based transition metal dichalcogenides, Nano Lett. 16(4), 2786 (2016)
https://doi.org/10.1021/acs.nanolett.6b00536
10 A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Optical generation of excitonic valley coherence in monolayer WSe2,Nat. Nanotechnol. 8(9), 634 (2013)
https://doi.org/10.1038/nnano.2013.151
11 K. Novoselov and A. C. Neto, Two-dimensional crystalsbased heterostructures: Materials with tailored properties, Phys. Scr. 2012, 014006 (2012)
https://doi.org/10.1088/0031-8949/2012/T146/014006
12 A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)
https://doi.org/10.1038/nature12385
13 K. Novoselov, A. Mishchenko, A. Carvalho, and A. C. Neto, 2D materials and van der Waals heterostructures,Science 353(6298), aac9439 (2016)
https://doi.org/10.1126/science.aac9439
14 D. Jariwala, T. J. Marks, and M. C. Hersam, Mixeddimensional van der Waals heterostructures, Nat. Mater. 16(2), 170 (2017)
https://doi.org/10.1038/nmat4703
15 B. Radisavljevic, M. B. Whitwick, and A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano 5(12), 9934 (2011)
https://doi.org/10.1021/nn203715c
16 D. Ovchinnikov, A. Allain, Y.S. Huang, D. Dumcenco, and A. Kis, Electrical transport properties of singlelayer WS2,ACS Nano 8(8), 8174 (2014)
https://doi.org/10.1021/nn502362b
17 J. Lee, K. F. Mak, and J. Shan, Electrical control of the valley Hall effect in bilayer MoS2 transistors, Nat. Nanotechnol. 11(5), 421 (2016)
https://doi.org/10.1038/nnano.2015.337
18 Z. Wang, J. Shan, and K. F. Mak, Valley- and spinpolarized Landau levels in monolayer WSe2, Nat. Nanotechnol. 12(2), 144 (2016)
https://doi.org/10.1038/nnano.2016.213
19 D. Wu, X. Li, L. Luan, X. Wu, W. Li, M. N. Yogeesh, R. Ghosh, Z. Chu, D. Akinwande, Q. Niu, and K. Lai, Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors, Proc. Natl. Acad. Sci. USA 113(31), 8583 (2016)
https://doi.org/10.1073/pnas.1605982113
20 Y. Jia, T. K. Stanev, E. J. Lenferink, and N. P. Stern, Enhanced conductivity along lateral homojunction interfaces of atomically thin semiconductors, 2D Materials 4, 021012 (2017)
21 S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts, Nano Lett. 13(1), 100 (2013)
https://doi.org/10.1021/nl303583v
22 B. Radisavljevic, M. B. Whitwick, and A. Kis, Smallsignal amplifier based on single-layer MoS2, Appl. Phys. Lett. 101(4), 043103 (2012)
https://doi.org/10.1063/1.4738986
23 J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, Highly flexible MoS2 thin-film transistors with ion gel dielectrics, Nano Lett. 12(8), 4013 (2012)
https://doi.org/10.1021/nl301335q
24 H.Y. Chang, S. Yang, J. Lee, L. Tao, W.S. Hwang, D. Jena, N. Lu, and D. Akinwande, High-performance, highly bendable MoS2 transistors with high-Kdielectrics for flexible low-power systems, ACS Nano 7, 5446 (2013)
https://doi.org/10.1021/nn401429w
25 K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors, Nanoscale 6(18), 10530 (2014)
https://doi.org/10.1039/C4NR02634A
26 H. Yu, D. Talukdar, W. Xu, J. B. Khurgin, and Q. Xiong, Charge-induced second-harmonic generation in bilayer WSe2, Nano Lett. 15(8), 5653 (2015)
https://doi.org/10.1021/acs.nanolett.5b02547
27 G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances,Phys. Rev. Lett. 114(9), 097403 (2015)
https://doi.org/10.1103/PhysRevLett.114.097403
28 K. L. Seyler, J. R. Schaibley, P. Gong, P. Rivera, A. M. Jones, S. Wu, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Electrical control of second-harmonic generation in a WSe2 monolayer transistor, Nat. Nanotechnol. 10(5), 407 (2015)
https://doi.org/10.1038/nnano.2015.73
29 Z. Sun, A. Martinez, and F. Wang, Optical modulators with 2D layered material, Nat. Photon. 10(4), 227 (2016)
https://doi.org/10.1038/nphoton.2016.15
30 Y. M. He, G. Clark, J. R. Schaibley, Y. He, M. C. Chen, Y. J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.Y. Lu, and J. W. Pan, Single quantum emitters in monolayer semiconductors, Nat. Nanotechnol. 10(6), 497 (2015)
https://doi.org/10.1038/nnano.2015.75
31 A. Branny, G. Wang, S. Kumar, C. Robert, B. Lassagne, X. Marie, B. D. Gerardot, and B. Urbaszek, Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning, Appl. Phys. Lett. 108(14), 142101 (2016)
https://doi.org/10.1063/1.4945268
32 S. Kumar, A. Kaczmarczyk, and B. D. Gerardot, Straininduced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2, Nano Lett. 15(11), 7567 (2015)
https://doi.org/10.1021/acs.nanolett.5b03312
33 A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoǧlu, Optically active quantum dots in monolayer WSe2, Nat. Nanotechnol. 10(6), 491 (2015)
https://doi.org/10.1038/nnano.2015.60
34 J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, Surface plasmonenhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays, Small 11(20), 2392 (2015)
https://doi.org/10.1002/smll.201403422
35 N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer, Nat. Commun. 7, 13328 (2016)
https://doi.org/10.1038/ncomms13328
36 S. Butun, E. Palacios, J. D. Cain, Z. Liu, V. P. Dravid, and K. Aydin, Quantifying plasmon-enhanced light absorption in monolayer WS2 films, ACS Appl. Mater. Interfaces 9(17), 15044 (2017)
https://doi.org/10.1021/acsami.7b01947
37 N. Lundt, P. Nagler, A. Nalitov, S. Klembt, M. Wurdack, S. Stoll, T. Harder, S. Betzold, V. Baumann, A. Kavokin, et al., Valley polarized relaxation and upconversion luminescence from tamm-plasmon trionpolaritons with a MoSe2 monolayer,2D Materials 4, 025096 (2017)
38 T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, Room temperature chiral coupling of valley excitons with spin-momentum locked surface plasmons, ACS Photon. 5(4), 1281 (2018)
https://doi.org/10.1021/acsphotonics.7b01032
39 T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, Polaritons in layered twodimensional materials, Nat. Mater. 16(2), 182 (2017)
https://doi.org/10.1038/nmat4792
40 D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, Polaritons in van der Waals materials, Science 354(6309), aag1992 (2016)
https://doi.org/10.1126/science.aag1992
41 X. Liu, T. Galfsky, Z. Sun, F. Xia, E. C. Lin, Y. H. Lee, S. Kéna-Cohen, and V. M. Menon, Strong light–matter coupling in two-dimensional atomic crystals, Nat. Photon. 9(1), 30 (2015)
https://doi.org/10.1038/nphoton.2014.304
42 Y. J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, Valley-polarized exciton–polaritons in a monolayer semiconductor, Nat. Photon. 11(7), 431 (2017)
https://doi.org/10.1038/nphoton.2017.86
43 J. Pak, J. Jang, K. Cho, T. Y. Kim, J. K. Kim, Y. Song, W. K. Hong, M. Min, H. Lee, and T. Lee, Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine, Nanoscale 7(44), 18780 (2015)
https://doi.org/10.1039/C5NR04836B
44 L. Britnell, R. Ribeiro, A. Eckmann, R. Jalil, B. Belle, A. Mishchenko, Y. J. Kim, R. Gorbachev, T. Georgiou, S. Morozov, et al., Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)
https://doi.org/10.1126/science.1235547
45 A. Pospischil, M. M. Furchi, and T. Mueller, Solarenergy conversion and light emission in an atomic monolayer p–n diode, Nat. Nanotechnol. 9(4), 257 (2014)
https://doi.org/10.1038/nnano.2014.14
46 F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. Haigh, A. Geim, A. Tartakovskii, and K. S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures, Nat. Mater. 14(3), 301 (2015)
https://doi.org/10.1038/nmat4205
47 J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions, Nat. Nanotechnol. 9(4), 268 (2014)
https://doi.org/10.1038/nnano.2014.26
48 B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide, Nat. Nanotechnol. 9(4), 262 (2014)
https://doi.org/10.1038/nnano.2014.25
49 Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, Monolayer excitonic laser, Nat. Photon. 9(11), 733 (2015)
https://doi.org/10.1038/nphoton.2015.197
50 J. Shang, C. Cong, Z. Wang, N. Peimyoo, L. Wu, C. Zou, Y. Chen, X. Y. Chin, J. Wang, C. Soci, W. Huang, and T. Yu, Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers, Nat. Commun. 8(1), 543 (2017)
https://doi.org/10.1038/s41467-017-00743-w
51 L. Peng, Y. Yuan, G. Li, X. Yang, J. J. Xian, C. J. Yi, Y. G. Shi, and Y. S. Fu, Observation of topological states residing at step edges of WTe2, Nat. Commun. 8(1), 659 (2017)
https://doi.org/10.1038/s41467-017-00745-8
52 I. Belopolski, D. S. Sanchez, Y. Ishida, X. Pan, P. Yu, S. Y. Xu, G. Chang, T. R. Chang, H. Zheng, N. Alidoust, et al., Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2, Nat. Commun. 7, 13643 (2016)
https://doi.org/10.1038/ncomms13643
53 Y. Zhang, T. Oka, R. Suzuki, J. Ye, and Y. Iwasa, Electrically switchable chiral light-emitting transistor, Science 344(6185), 725 (2014)
https://doi.org/10.1126/science.1251329
54 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
55 M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,Nat. Chem. 5(4), 263 (2013)
https://doi.org/10.1038/nchem.1589
56 H. Yu, X. Cui, X. Xu, and W. Yao, Valley excitons in two-dimensional semiconductors, Natl. Sci. Rev. 2(1), 57 (2015)
https://doi.org/10.1093/nsr/nwu078
57 J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, Valleytronics in 2D materials, Nat. Rev. Mater. 1(11), 16055 (2016)
https://doi.org/10.1038/natrevmats.2016.55
58 W. T. Hsu, Y. L. Chen, C. H. Chen, P. S. Liu, T. H. Hou, L. J. Li, and W. H. Chang, Optically initialized robust valley-polarized holes in monolayer WSe2, Nat. Commun. 6, 8963 (2015)
https://doi.org/10.1038/ncomms9963
59 X. X. Zhang, T. Cao, Z. Lu, Y. C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone, J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz, Magnetic brightening and control of dark excitons in monolayer WSe2, Nat. Nanotechnol. 12(9), 883 (2017)
https://doi.org/10.1038/nnano.2017.105
60 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
61 T. Cheiwchanchamnangij and W. R. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2, Phys. Rev. B 85(20), 205302 (2012)
https://doi.org/10.1103/PhysRevB.85.205302
62 A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2, Phys. Rev. Lett. 113(7), 076802 (2014)
https://doi.org/10.1103/PhysRevLett.113.076802
63 K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)
https://doi.org/10.1038/nmat3505
64 J. Klein, J. Wierzbowski, A. Regler, J. Becker, F. Heimbach, K. Müller, M. Kaniber, and J. J. Finley, Stark effect spectroscopy of mono- and few-layer MoS2, Nano Lett. 16(3), 1554 (2016)
https://doi.org/10.1021/acs.nanolett.5b03954
65 K. C. Wang, T. K. Stanev, D. Valencia, J. Charles, A. Henning, V. K. Sangwan, A. Lahiri, D. Mejia, P. Sarangapani, M. Povolotskyi, et al., Control of interlayer physics in 2H transition metal dichalcogenides, J. Appl. Phys. 122(22), 224302 (2017)
https://doi.org/10.1063/1.5005958
66 Z. Wang, Y. H. Chiu, K. Honz, K. F. Mak, and J. Shan, Electrical tuning of interlayer exciton gases in WSe2 bilayers, Nano Lett. 18(1), 137 (2018)
https://doi.org/10.1021/acs.nanolett.7b03667
67 J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductor, Nat. Commun. 4, 1474 (2013)
https://doi.org/10.1038/ncomms2498
68 D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
https://doi.org/10.1103/PhysRevLett.108.196802
69 A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Falko, k·p theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Materials 2, 022001 (2015)
70 X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10(5), 343 (2014)
71 T. Yu and M. Wu, Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2, Phys. Rev. B 89(20), 205303 (2014)
https://doi.org/10.1103/PhysRevB.89.205303
72 W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77(23), 235406 (2008)
https://doi.org/10.1103/PhysRevB.77.235406
73 K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, The valley Hall effect in MoS2 transistors, Science 344(6191), 1489 (2014)
https://doi.org/10.1126/science.1250140
74 A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Magneto-oscillatory conductance in silicon surfaces, Phys. Rev. Lett. 16(20), 901 (1966)
https://doi.org/10.1103/PhysRevLett.16.901
75 D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano 8(2), 1102 (2014)
https://doi.org/10.1021/nn500064s
76 Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)
https://doi.org/10.1038/natrevmats.2016.42
77 W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, Recent development of twodimensional transition metal dichalcogenides and their applications, Mater. Today 20(3), 116 (2017)
https://doi.org/10.1016/j.mattod.2016.10.002
78 M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, Mechanisms of photoconductivity in atomically thin MoS2, Nano Lett. 14(11), 6165 (2014)
https://doi.org/10.1021/nl502339q
79 C.-C. Wu, D. Jariwala, V. K. Sangwan, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy, J. Phys. Chem. Lett. 4(15), 2508 (2013)
https://doi.org/10.1021/jz401199x
80 S. L. Howell, D. Jariwala, C. C. Wu, K. S. Chen, V. K. Sangwan, J. Kang, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Investigation of band-offsets at monolayer–multilayer MoS2 junctions by scanning photocurrent microscopy, Nano Lett. 15(4), 2278 (2015)
https://doi.org/10.1021/nl504311p
81 M. Tosun, D. Fu, S. B. Desai, C. Ko, J. Seuk Kang, D. H. Lien, M. Najmzadeh, S. Tongay, J. Wu, and A. Javey, MoS2 heterojunctions by thickness modulation, Sci. Rep. 5(1), 10990 (2015)
https://doi.org/10.1038/srep10990
82 H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)
https://doi.org/10.1038/nnano.2012.95
83 T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valleyselective circular dichroism of monolayer molybdenum disulphide,Nat. Commun. 3(1), 887 (2012)
https://doi.org/10.1038/ncomms1882
84 T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, Low-temperature photocarrier dynamics in monolayer MoS2, Appl. Phys. Lett. 99(10), 102109 (2011)
https://doi.org/10.1063/1.3636402
85 G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2, Phys. Rev. B 90(7), 075413 (2014)
https://doi.org/10.1103/PhysRevB.90.075413
86 D. Lagarde, L. Bouet, X. Marie, C. Zhu, B. Liu, T. Amand, P. Tan, and B. Urbaszek, Carrier and polarization dynamics in monolayer MoS2, Phys. Rev. Lett. 112(4), 047401 (2014)
https://doi.org/10.1103/PhysRevLett.112.047401
87 G. Wang, E. Palleau, T. Amand, S. Tongay, X. Marie, and B. Urbaszek, Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayers, Appl. Phys. Lett. 106(11), 112101 (2015)
https://doi.org/10.1063/1.4916089
88 C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, Exciton radiative lifetime in transition metal dichalcogenide monolayers, Phys. Rev. B 93(20), 205423 (2016)
https://doi.org/10.1103/PhysRevB.93.205423
89 G. Plechinger, P. Nagler, A. Arora, R. Schmidt, A. Chernikov, J. Lupton, R. Bratschitsch, C. Schller, and T. Korn, Valley dynamics of excitons in monolayer dichalcogenides, physica status solidi RRL 11, 1700131 (2017)
90 L. Yang, N. A. Sinitsyn, W. Chen, J. Yuan, J. Zhang, J. Lou, and S. A. Crooker, Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2, Nat. Phys. 11(10), 830 (2015)
91 X. Song, S. Xie, K. Kang, J. Park, and V. Sih, Longlived hole spin/valley polarization probed by Kerr rotation in monolayer WSe2, Nano Lett. 16(8), 5010 (2016)
https://doi.org/10.1021/acs.nanolett.6b01727
92 T. Yan, S. Yang, D. Li, and X. Cui, Long valley relaxation time of free carriers in monolayer WSe2,Phys. Rev. B 95(24), 241406 (2017)
https://doi.org/10.1103/PhysRevB.95.241406
93 P. Dey, L. Yang, C. Robert, G. Wang, B. Urbaszek, X. Marie, and S. A. Crooker, Gate-controlled spin-valley locking of resident carriers in WSe2 monolayers, Phys. Rev. Lett. 119(13), 137401 (2017)
https://doi.org/10.1103/PhysRevLett.119.137401
94 G. Aivazian, Z. Gong, A. M. Jones, R.L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WSe2, Nat. Phys. 11, 148 (2015)
95 A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoǧlu, Valley Zeeman effect in elementary optical excitations of monolayer WSe2, Nat. Phys. 11(2), 141 (2015)
96 Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, Valley splitting and polarization by the Zeeman effect in monolayer MoSe2, Phys. Rev. Lett. 113(26), 266804 (2014)
https://doi.org/10.1103/PhysRevLett.113.266804
97 D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe2, Phys. Rev. Lett. 114(3), 037401 (2015)
https://doi.org/10.1103/PhysRevLett.114.037401
98 M. Molas, C. Faugeras, A. Slobodeniuk, K. Nogajewski, M. Bartos, D. Basko, and M. Potemski, Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides, 2D Materials 4, 021003 (2017)
99 G. Wang, M. M. Glazov, C. Robert, T. Amand, X. Marie, and B. Urbaszek, Double resonant Raman scattering and valley coherence generation in monolayer WSe2,Phys. Rev. Lett. 115(11), 117401 (2015)
https://doi.org/10.1103/PhysRevLett.115.117401
100 G. Wang, X. Marie, B. L. Liu, T. Amand, C. Robert, F. Cadiz, P. Renucci, and B. Urbaszek, Control of exciton valley coherence in transition metal dichalcogenide monolayers, Phys. Rev. Lett. 117(18), 187401 (2016)
https://doi.org/10.1103/PhysRevLett.117.187401
101 Z. Ye, D. Sun, and T. F. Heinz, Optical manipulation of valley pseudospin, Nat. Phys. 13, 26 (2016)
102 R. Schmidt, A. Arora, G. Plechinger, P. Nagler, A. G. del Águila, M. V. Ballottin, P. C. Christianen, S. M. de Vasconcellos, C. Schüller, T. Korn, and R. Bratschitsch, Magnetic-field-induced rotation of polarized light emission from monolayer WS2, Phys. Rev. Lett. 117(7), 077402 (2016)
https://doi.org/10.1103/PhysRevLett.117.077402
103 F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, and B. Urbaszek, Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures, Phys. Rev. X 7(2), 021026 (2017)
https://doi.org/10.1103/PhysRevX.7.021026
104 N. Yoshikawa, S. Tani, and K. Tanaka, Raman-like resonant secondary emission causes valley coherence in CVD-grown monolayer MoS2, Phys. Rev. B 95(11), 115419 (2017)
https://doi.org/10.1103/PhysRevB.95.115419
105 K. Hao, G. Moody, F.Wu, C. K. Dass, L. Xu, C.-H. Chen, L. Sun, M.-Y. Li, L.-J. Li, A. H. MacDonald, and X. Li, Direct measurement of exciton valley coherence in monolayer WSe2, Nat. Phys. 12, 677 (2016)
106 N. Ubrig, S. Jo, M. Philippi, D. Costanzo, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping, Nano Lett. 17(9), 5719 (2017)
https://doi.org/10.1021/acs.nanolett.7b02666
107 M. Onga, Y. Zhang, T. Ideue, and Y. Iwasa, Exciton Hall effect in monolayer MoS2, Nat. Mater. 16(12), 1193 (2017)
https://doi.org/10.1038/nmat4996
108 J. Lee, Z. Wang, H. Xie, K. F. Mak, and J. Shan, Valley magnetoelectricity in single-layer MoS2, Nat. Mater. 16(9), 887 (2017)
https://doi.org/10.1038/nmat4931
109 Y. Kato, R. Myers, A. Gossard, and D. Awschalom, Observation of the spin Hall effect in semiconductors, Science 306(5703), 1910 (2004)
https://doi.org/10.1126/science.1105514
110 M. Glazov and S. Ganichev, High frequency electric field induced nonlinear effects in graphene, Phys. Rep. 535(3), 101 (2014)
https://doi.org/10.1016/j.physrep.2013.10.003
111 M. Eginligil, B. Cao, Z. Wang, X. Shen, C. Cong, J. Shang, C. Soci, and T. Yu, Dichroic spin–valley photocurrent in monolayer molybdenum disulphide, Nat. Commun. 6, 7636 (2015)
https://doi.org/10.1038/ncomms8636
112 H. Guan, N. Tang, X. Xu, L. Shang, W. Huang, L. Fu, X. Fang, J. Yu, C. Zhang, X. Zhang, L. Dai, Y. Chen, W. Ge, and B. Shen, Photon wavelength dependent valley photocurrent in multilayer MoS2, Phys. Rev. B 96(24), 241304 (2017)
https://doi.org/10.1103/PhysRevB.96.241304
113 H. Yuan, X. Wang, B. Lian, H. Zhang, X. Fang, B. Shen, G. Xu, Y. Xu, S. C. Zhang, H. Y. Hwang, and Y. Cui, Generation and electric control of spin–valleycoupled circular photogalvanic current in WSe2, Nat. Nanotechnol. 9(10), 851 (2014)
https://doi.org/10.1038/nnano.2014.183
114 A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, Probing the influence of dielectric environment on excitons in monolayer WSe2: Insight from high magnetic fields, Nano Lett. 16(11), 7054 (2016)
https://doi.org/10.1021/acs.nanolett.6b03276
115 M. Buscema, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2, Nano Res. 7(4), 561 (2014)
https://doi.org/10.1007/s12274-014-0424-0
116 S. Latini, T. Olsen, and K. S. Thygesen, Excitons in van der Waals heterostructures: The important role of dielectric screening, Phys. Rev. B 92(24), 245123 (2015)
https://doi.org/10.1103/PhysRevB.92.245123
117 H. Isago, Optical Spectra of Phthalocyanines and Related Compounds, Springer, 2015
https://doi.org/10.1007/978-4-431-55102-7
118 X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M. S. Dresselhaus, Raman enhancement effect on twodimensional layered materials: Graphene, h-BN and MoS2, Nano Lett. 14(6), 3033 (2014)
https://doi.org/10.1021/nl404610c
119 C. Muehlethaler, C. R. Considine, V. Menon, W. C. Lin, Y.H. Lee, and J. R. Lombardi, Ultrahigh Raman enhancement on monolayer MoS2, ACS Photon. 3(7), 1164 (2016)
https://doi.org/10.1021/acsphotonics.6b00213
120 J. F. Arenas, M. S. Woolley, J. C. Otero, and J. I. Marcos, Charge-transfer processes in surface-enhanced Raman scattering, Franck–Condon active vibrations of pyrazine, J. Phys. Chem. 100(8), 3199 (1996)
https://doi.org/10.1021/jp952240k
121 D. Jariwala, S. L. Howell, K. S. Chen, J. Kang, V. K. Sangwan, S. A. Filippone, R. Turrisi, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2, Nano Lett. 16(1), 497 (2016)
https://doi.org/10.1021/acs.nanolett.5b04141
122 A. Raja, A. Montoya-Castillo, J. Zultak, X. X. Zhang, Z. Ye, C. Roquelet, D. A. Chenet, A. M. van der Zande, P. Huang, S. Jockusch, J. Hone, D. R. Reichman, L. E. Brus, and T. F. Heinz, Energy transfer from quantum dots to graphene and MoS2: The role of absorption and screening in two-dimensional materials, Nano Lett. 16(4), 2328 (2016)
https://doi.org/10.1021/acs.nanolett.5b05012
123 T. Guo, S. Sampat, K. Zhang, J. A. Robinson, S. M. Rupich, Y. J. Chabal, Y. N. Gartstein, and A. V. Malko, Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films, Sci. Rep. 7, 41967 (2017)
https://doi.org/10.1038/srep41967
124 S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, and J. H. Cho, Dyesensitized MoS2 photodetector with enhanced spectral photoresponse, ACS Nano 8(8), 8285 (2014)
https://doi.org/10.1021/nn502715h
125 S. Bettis Homan, V. K. Sangwan, I. Balla, H. Bergeron, E. A. Weiss, and M. C. Hersam, Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic Pentacene–MoS2 van der Waals heterojunction, Nano Lett. 17(1), 164 (2017)
https://doi.org/10.1021/acs.nanolett.6b03704
126 F. Prins, A. J. Goodman, and W. A. Tisdale, Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2, Nano Lett. 14(11), 6087 (2014)
https://doi.org/10.1021/nl5019386
127 D. Prasai, A. R. Klots, A. Newaz, J. S. Niezgoda, N. J. Orfield, C. A. Escobar, A. Wynn, A. Efimov, G. K. Jennings, S. J. Rosenthal, and K. I. Bolotin, Electrical control of near-field energy transfer between quantum dots and two-dimensional semiconductors, Nano Lett. 15(7), 4374 (2015)
https://doi.org/10.1021/acs.nanolett.5b00514
128 M. Amani, D. H.Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, K. C. Santosh, M. Dubey, et al., Near-unity photoluminescence quantum yield in MoS2, Science 350(6264), 1065 (2015)
https://doi.org/10.1126/science.aad2114
129 D. M. Sim, M. Kim, S. Yim, M.J. Choi, J. Choi, S. Yoo, and Y. S. Jung, Controlled doping of vacancy-containing few-layer MoS2viahighly stable thiol-based molecular chemisorption, ACS Nano 9(12), 12115 (2015)
https://doi.org/10.1021/acsnano.5b05173
130 H. V. Han, A. Y. Lu, L. S. Lu, J. K. Huang, H. Li, C. L. Hsu, Y. C. Lin, M. H. Chiu, K. Suenaga, C. W. Chu, H. C. Kuo, W. H. Chang, L. J. Li, and Y. Shi, Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment, ACS Nano 10(1), 1454 (2016)
https://doi.org/10.1021/acsnano.5b06960
131 I. S. Kim, V. K. Sangwan, D. Jariwala, J. D. Wood, S. Park, K.S. Chen, F. Shi, F. Ruiz-Zepeda, A. Ponce, M. Jose-Yacaman, V. P. Dravid, T. J. Marks, M. C. Hersam, and L. J. Lauhon, Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2, ACS Nano 8(10), 10551 (2014)
https://doi.org/10.1021/nn503988x
132 X. Liu, D. Qu, J. Ryu, F. Ahmed, Z. Yang, D. Lee, and W. J. Yoo, P-type polar transition of chemically doped multilayer MoS2 transistor, Adv. Mater. 28(12), 2345 (2016)
https://doi.org/10.1002/adma.201505154
133 A. Nipane, D. Karmakar, N. Kaushik, S. Karande, and S. Lodha, Few-layer MoS2p-type devices enabled by selective doping using low energy phosphorus implantation, ACS Nano 10(2), 2128 (2016)
https://doi.org/10.1021/acsnano.5b06529
134 C.-H. Chen, C.-L. Wu, J. Pu, M.-H. Chiu, P. Kumar, T. Takenobu, and L.-J. Li, Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration, 2D Materials 1, 034001 (2014)
135 H. Matsuoka, K. Kanahashi, N. Tanaka, Y. Shoji, L. J. Li, J. Pu, H. Ito, H. Ohta, T. Fukushima, and T. Takenobu, Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant, Jpn. J. Appl. Phys. 57(2S2), 02CB15 (2018)
136 T. Komesu, D. Le, I. Tanabe, E. F. Schwier, Y. Kojima, M. Zheng, K. Taguchi, K. Miyamoto, T. Okuda, H. Iwasawa, K. Shimada, T. S. Rahman, and P. A. Dowben, Adsorbate doping of MoS2 and WSe2: The influence of Na and Co, J. Phys.: Condens. Matter 29(28), 285501 (2017)
https://doi.org/10.1088/1361-648X/aa7482
137 H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium, Nano Lett. 13(5), 1991 (2013)
https://doi.org/10.1021/nl400044m
138 K. Chen, D. Kiriya, M. Hettick, M. Tosun, T.J. Ha, S. R. Madhvapathy, S. Desai, A. Sachid, and A. Javey, Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density, APL Mater. 2, 092504 (2014)
https://doi.org/10.1063/1.4891824
139 W. Wang, X. Niu, H. Qian, L. Guan, M. Zhao, X. Ding, S. Zhang, Y. Wang, and J. Sha, Surface charge transfer doping of monolayer molybdenum disulfide by black phosphorus quantum dots, Nanotechnology 27(50), 505204 (2016)
https://doi.org/10.1088/0957-4484/27/50/505204
140 S. S. Chee, C. Oh, M. Son, G. C. Son, H. Jang, T. J. Yoo, S. Lee, W. Lee, J. Y. Hwang, H. Choi, B. H. Lee, and M. H. Ham, Sulfur vacancy-induced reversible doping of transition metal disulfides via hydrazine treatment, Nanoscale 9(27), 9333 (2017)
https://doi.org/10.1039/C7NR01883E
141 P. Nagler, M. V. Ballottin, A. A. Mitioglu, F. Mooshammer, N. Paradiso, C. Strunk, R. Huber, A. Chernikov, P. Christianen, C. Schüller, and T. Korn, Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures, Nat. Commun. 8(1), 1551 (2017)
https://doi.org/10.1038/s41467-017-01748-1
142 P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Valley-polarized exciton dynamics in a 2D semiconductor heterostructure, Science 351(6274), 688 (2016)
https://doi.org/10.1126/science.aac7820
143 J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Band offsets and heterostructures of two-dimensional semiconductors, Appl. Phys. Lett. 102(1), 012111 (2013)
https://doi.org/10.1063/1.4774090
144 M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, J. H. He, W.H. Chang, K. Suenaga, and L.J. Li, Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface, Science 349(6247), 524 (2015)
https://doi.org/10.1126/science.aab4097
145 R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and X. Duan, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–ndiodes, Nano Lett. 14(10), 5590 (2014)
https://doi.org/10.1021/nl502075n
146 M. M. Furchi, A. A. Zechmeister, F. Hoeller, S. Wachter, A. Pospischil, and T. Mueller, Photovoltaics in van der Waals heterostructures, IEEE J. Sel. Top. Quantum Electron. 23(1), 106 (2017)
https://doi.org/10.1109/JSTQE.2016.2582318
147 B. Peng, G. Yu, X. Liu, B. Liu, X. Liang, L. Bi, L. Deng, T. C. Sum, and K. P. Loh, Ultrafast charge transfer in MoS2/WSe2 p–n Heterojunction, 2D Materials 3, 025020 (2016)
148 J. Kim, C. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M. F. Crommie, and F. Wang, Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures, Sci. Adv. 3(7), e1700518 (2017)
https://doi.org/10.1126/sciadv.1700518
149 J. R. Schaibley, P. Rivera, H. Yu, K. L. Seyler, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, Directional interlayer spin-valley transfer in two-dimensional heterostructures, Nat. Commun. 7, 13747 (2016)
https://doi.org/10.1038/ncomms13747
150 H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, et al., Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)
https://doi.org/10.1073/pnas.1405435111
151 P. Rivera, J. Schaibley, A. Jones, J. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures, Nat. Commun. 6(1), 6242 (2015)
https://doi.org/10.1038/ncomms7242
152 P. K. Nayak, Y. Horbatenko, S. Ahn, G. Kim, J.U. Lee, K. Y. Ma, A.R. Jang, H. Lim, D. Kim, S. Ryu, H. Cheong, N. Park, and H. S. Shin, Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures, ACS Nano 11, 4041 (2017)
https://doi.org/10.1021/acsnano.7b00640
153 J. S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. Yan, D. Mandrus, D. Cobden, W. Yao, and X. Xu, Interlayer exciton optoelectronics in a 2D heterostructure p–n junction, Nano Lett. 17(2), 638 (2017)
https://doi.org/10.1021/acs.nanolett.6b03398
154 S. Huang, L. Liang, X. Ling, A. A. Puretzky, D. B. Geohegan, B. G. Sumpter, J. Kong, V. Meunier, and M. S. Dresselhaus, Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2, Nano Lett. 16(2), 1435 (2016)
https://doi.org/10.1021/acs.nanolett.5b05015
155 K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S. G. Louie, and F. Wang, Evolution of interlayer coupling in twisted molybdenum disulfide bilayers, Nat. Commun. 5, 4966 (2014)
https://doi.org/10.1038/ncomms5966
156 S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, and M. S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy, Nano Lett. 14(10), 5500 (2014)
https://doi.org/10.1021/nl5014597
157 J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, Valley polarization in stacked MoS2 induced by circularly polarized light, Nano Res. 10(5), 1618 (2017)
https://doi.org/10.1007/s12274-016-1329-x
158 R. Suzuki, M. Sakano, Y. J. Zhang, R. Akashi, D. Morikawa, A. Harasawa, K. Yaji, K. Kuroda, K. Miyamoto, T. Okuda, K. Ishizaka, R. Arita, and Y. Iwasa, Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry, Nat. Nanotechnol. 9(8), 611 (2014)
https://doi.org/10.1038/nnano.2014.148
159 T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y. R. Shen, W. T. Liu, and S. Wu, Valley and band structure engineering of folded MoS2 bilayers, Nat. Nanotechnol. 9(10), 825 (2014)
https://doi.org/10.1038/nnano.2014.176
160 B. Miller, A. Steinhoff, B. Pano, J. Klein, F. Jahnke, A. Holleitner, and U. Wurstbauer, Long-lived direct and indirect interlayer excitons in van der Waals heterostructures, Nano Lett. 17(9), 5229 (2017)
https://doi.org/10.1021/acs.nanolett.7b01304
161 H. Yu, Y. Wang, Q. Tong, X. Xu, and W. Yao, Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers, Phys. Rev. Lett. 115(18), 187002 (2015)
https://doi.org/10.1103/PhysRevLett.115.187002
162 M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Band-structure topologies of graphene: Spin-orbit coupling effects from first principles, Phys. Rev. B 80(23), 235431 (2009)
https://doi.org/10.1103/PhysRevB.80.235431
163 Y. K. Luo, J. Xu, T. Zhu, G. Wu, E. J. McCormick, W. Zhan, M. R. Neupane, and R. K. Kawakami, Optovalleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves, Nano Lett. 17(6), 3877 (2017)
https://doi.org/10.1021/acs.nanolett.7b01393
164 A. Avsar, D. Unuchek, J. Liu, O. L. Sanchez, K. Watanabe, T. Taniguchi, B. Ozyilmaz, and A. Kis, Optospintronics in graphene via proximity coupling, ACS Nano 11(11), 11678 (2017)
https://doi.org/10.1021/acsnano.7b06800
165 A. Avsar, J. Y. Tan, T. Taychatanapat, J. Balakrishnan, G. Koon, Y. Yeo, J. Lahiri, A. Carvalho, A. Rodin, E. C. T. O’Farrell, G. Eda, A. H. Castro Neto, and B. Özyilmaz, Spin–orbit proximity effect in graphene, Nat. Commun. 5, 4875 (2014)
https://doi.org/10.1038/ncomms5875
166 M. Gmitra, D. Kochan, P. Högl, and J. Fabian, Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides, Phys. Rev. B 93(15), 155104 (2016)
https://doi.org/10.1103/PhysRevB.93.155104
167 S. Omar and B. J. van Wees, Graphene-WS2 heterostructures for tunable spin injection and spin transport, Phys. Rev. B 95(8), 081404 (2017)
https://doi.org/10.1103/PhysRevB.95.081404
168 T. S. Ghiasi, J. Ingla-Aynés, A. A. Kaverzin, and B. J. van Wees, Large proximity-induced spin lifetime anisotropy in transition-metal dichalcogenide/graphene heterostructures, Nano Lett. 17(12), 7528 (2017) (2017)
169 A. W. Cummings, J. H. Garcia, J. Fabian, and S. Roche, Giant spin lifetime anisotropy in graphene induced by proximity effects, Phys. Rev. Lett. 119(20), 206601 (2017)
https://doi.org/10.1103/PhysRevLett.119.206601
170 L. A. Benítez, J. F. Sierra, W. S. Torres, A. Arrighi, F. Bonell, M. V. Costache, and S. O. Valenzuela, Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature, Nat. Phys. 14, 303 (2017)
171 S. Omar and B. J. van Wees, Spin transport in highmobility graphene on WS2 substrate with electric-field tunable proximity spin-orbit interaction, Phys. Rev. B 97(4), 045414 (2018)
https://doi.org/10.1103/PhysRevB.97.045414
172 W. Yan, O. Txoperena, R. Llopis, H. Dery, L. E. Hueso, and F. Casanova, A two-dimensional spin field-effect switch, Nat. Commun. 7, 13372 (2016)
https://doi.org/10.1038/ncomms13372
173 A. Dankert and S. P. Dash, Electrical gate control of spin current in van der Waals heterostructures at room temperature, Nat. Commun. 8, 16093 (2017)
https://doi.org/10.1038/ncomms16093
174 D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B. Robinson, E. Chekhovich, I. Tartakovskii, O. Kolosov, and A. Tartakovskii, Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates, Sci. Rep. 3, 3489 (2013)
https://doi.org/10.1038/srep03489
175 D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science 345(6194), 298 (2014)
https://doi.org/10.1126/science.1253213
176 M. K. L. Man, S. Deckoff-Jones, A. Winchester, G. Shi, G. Gupta, A. D. Mohite, S. Kar, E. Kioupakis, S. Talapatra, and K. M. Dani, Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer, Sci. Rep. 6, 20890 (2016)
https://doi.org/10.1038/srep20890
177 C. M. Chow, H. Yu, A. M. Jones, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, W. Yao, and X. Xu, Unusual exciton–phonon interactions at van der Waals engineered interfaces, Nano Lett. 17(2), 1194 (2017)
https://doi.org/10.1021/acs.nanolett.6b04944
178 W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)
https://doi.org/10.1038/nmat3518
179 J. Wierzbowski, J. Klein, F. Sigger, C. Straubinger, M. Kremser, T. Taniguchi, K. Watanabe, U. Wurstbauer, A. W. Holleitner, M. Kaniber, K. Mller, and J. J. Finley, Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit, Sci. Rep. 7(1), 12383 (2017)
https://doi.org/10.1038/s41598-017-09739-4
180 S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, et al., Optical signature of symmetry variations and spinvalley coupling in atomically thin tungsten dichalcogenides, Sci. Rep. 3, 1608 (2013)
https://doi.org/10.1038/srep01608
181 J. Kunstmann, T. B. Wendumu, and G. Seifert, Localized defect states in MoS2 monolayers: Electronic and optical properties, physica status solidi (b) 254, 1600645 (2016)
182 S. Y. Chen, T. Goldstein, J. Tong, T. Taniguchi, K. Watanabe, and J. Yan, Superior valley polarization and coherence of 2s excitons in monolayer WSe2, Phys. Rev. Lett. 120(4), 046402 (2018)
https://doi.org/10.1103/PhysRevLett.120.046402
183 K. Wang, K. D. Greve, L. A. Jauregui, A. Sushko, A. High, Y. Zhou, G. Scuri, T. Taniguchi, K. Watanabe, M. D. Lukin, H. Park, and P. Kim, Electrical control of charged carriers and excitons in atomically thin materials, Nat. Nanotechnol. 13(2), 128 (2018)
https://doi.org/10.1038/s41565-017-0030-x
184 H. J. Conley, B. Wang, J. I. Ziegler, S. T. Jr Haglund, Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(8), 3626 (2013)
https://doi.org/10.1021/nl4014748
185 S. B. Desai, G. Seol, J. S. Kang, H. Fang, C. Battaglia, R. Kapadia, J. W. Ager, J. Guo, and A. Javey, Straininduced indirect to direct bandgap transition in multilayer WSe2, Nano Lett. 14(8), 4592 (2014)
https://doi.org/10.1021/nl501638a
186 H. Rostami, R. Roldán, E. Cappelluti, R. Asgari, and F. Guinea, Theory of strain in single-layer transition metal dichalcogenides, Phys. Rev. B 92(19), 195402 (2015)
https://doi.org/10.1103/PhysRevB.92.195402
187 A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor, Nat. Commun. 8, 15053 (2017)
https://doi.org/10.1038/ncomms15053
188 M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J. Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, Single photon emitters in exfoliated WSe2 structures, Nat. Nanotechnol. 10(6), 503 (2015)
https://doi.org/10.1038/nnano.2015.67
189 C. Palacios-Berraquero, D. M. Kara, A. R. P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, Large-scale quantum-emitter arrays in atomically thin semiconductors, Nat. Commun. 8, 15093 (2017)
https://doi.org/10.1038/ncomms15093
190 G. D. Shepard, O. A. Ajayi, X. Li, X.-Y. Zhu, J. Hone, and S. Strauf, Nanobubble induced formation of quantum emitters in monolayer semiconductors, 2D Materials 4, 021019 (2017)
191 S. Schwarz, A. Kozikov, F. Withers, J. Maguire, A. Foster, S. Dufferwiel, L. Hague, M. Makhonin, L. Wilson, A. Geim, et al., Electrically pumped single-defect light emitters in WSe2, 2D Materials 3, 025038 (2016)
192 G. Clark, J. R. Schaibley, J. Ross, T. Taniguchi, K. Watanabe, J. R. Hendrickson, S. Mou, W. Yao, and X. Xu, Single defect light-emitting diode in a van der Waals heterostructure, Nano Lett. 16(6), 3944 (2016)
https://doi.org/10.1021/acs.nanolett.6b01580
193 E. M. Mannebach, C. Nyby, F. Ernst, Y. Zhou, J. Tolsma, Y. Li, M. J. Sher, I. C. Tung, H. Zhou, Q. Zhang, et al., Dynamic optical tuning of interlayer interactions in the transition metal dichalcogenides, Nano Lett. 17(12), 7761 (2017)
https://doi.org/10.1021/acs.nanolett.7b03955
194 S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett. 77(18), 3873 (1996)
https://doi.org/10.1103/PhysRevLett.77.3873
195 A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, Strongly interacting photons in a nonlinear cavity, Phys. Rev. Lett. 79(8), 1467 (1997)
196 J. K. Furdyna and J. Kossut (Eds.), Diluted Magnetic Semiconductors, Semiconductors and Semimetals, Vol. 25 New York: Academic Press, 1988
197 D. R. Yakovlev and W. Ossau, in: Introduction to the Physics of Diluted Magnetic Semiconductors, Springer Series in Materials Science, Vol. 144, edited by J. A. Gaj and J. Kossut, Berlin Heidelberg: Springer, 2010, pp 221–262
https://doi.org/10.1007/978-3-642-15856-8_7
198 R. C. Myers, M. Poggio, N. P. Stern, A. C. Gossard, and D. D. Awschalom, Antiferromagnetic s-d exchange coupling in GaMnAs, Phys. Rev. Lett. 95(1), 017204 (2005)
https://doi.org/10.1103/PhysRevLett.95.017204
199 N. P. Stern, R. C. Myers, M. Poggio, A. C. Gossard, and D. D. Awschalom, Confinement engineering of sd exchange interactions in Ga1−xMnxAs/AlyGa1−yAs quantum wells, Phys. Rev. B 75(4), 045329 (2007)
https://doi.org/10.1103/PhysRevB.75.045329
200 R. Beaulac, L. Schneider, P. I. Archer, G. Bacher, and D. R. Gamelin, Light-induced spontaneous magnetization in doped colloidal quantum dots, Science 325(5943), 973 (2009)
https://doi.org/10.1126/science.1174419
201 T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54(2), 437 (1982)
https://doi.org/10.1103/RevModPhys.54.437
202 U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)
https://doi.org/10.1109/JPROC.2002.1021567
203 D. C. Tsui, H. L. Stormer, and A. C. Gossard, Twodimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)
https://doi.org/10.1103/PhysRevLett.48.1559
204 Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, Bright, multicoloured light-emitting diodes based on quantum dots, Nat. Photon. 1(12), 717 (2007)
https://doi.org/10.1038/nphoton.2007.226
205 I. J. Kramer and E. H. Sargent, The architecture of colloidal quantum dot solar cells: Materials to devices, Chem. Rev. 114(1), 863 (2014)
https://doi.org/10.1021/cr400299t
206 H. M. Azzazy, M. M. Mansour, and S. C. Kazmierczak, From diagnostics to therapy: Prospects of quantum dots, Clin. Biochem. 40(13–14), 917 (2007)
https://doi.org/10.1016/j.clinbiochem.2007.05.018
207 J. Klinovaja and D. Loss, Spintronics in MoS2 monolayer quantum wires, Phys. Rev. B 88(7), 075404 (2013)
https://doi.org/10.1103/PhysRevB.88.075404
208 V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336(6084), 1003 (2012)
https://doi.org/10.1126/science.1222360
209 S. Pavlović and F. M. Peeters, Electronic properties of triangular and hexagonal MoS2 quantum dots, Phys. Rev. B 91, 155410 (2015)
https://doi.org/10.1103/PhysRevB.91.155410
210 L. Pei, S. Tao, S. Haibo, and X. Song, Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principles, Solid State Commun. 218, 25 (2015)
https://doi.org/10.1016/j.ssc.2015.06.008
211 A. J. Pearce and G. Burkard, Electron spin relaxation in a transition-metal dichalcogenide quantum dot, 2D Materials 4, 025114 (2017)
212 M. Brooks and G. Burkard, Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers, Phys. Rev. B 95(24), 245411 (2017)
https://doi.org/10.1103/PhysRevB.95.245411
213 S. Ono and T. Ogura, Theory of laterally confined two dimensional excitons, arXiv: 1801.06923 (2018)
214 G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, and T. Frauenheim, Structure and electronic properties of MoS2 nanotubes, Phys. Rev. Lett. 85(1), 146 (2000)
https://doi.org/10.1103/PhysRevLett.85.146
215 M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes, Science 292(5516), 479 (2001)
https://doi.org/10.1126/science.1059011
216 Z. Gan, L. Liu, H. Wu, Y. Hao, Y. Shan, X. Wu, and P. K. Chu, Quantum confinement effects across twodimensional planes in MoS2 quantum dots, Appl. Phys. Lett. 106(23), 233113 (2015)
https://doi.org/10.1063/1.4922551
217 D. Gopalakrishnan, D. Damien, B. Li, H. Gullappalli, V. K. Pillai, P. M. Ajayan, and M. M. Shaijumon, Electrochemical synthesis of luminescent MoS2 quantum dots, Chem. Commun. 51(29), 6293 (2015)
https://doi.org/10.1039/C4CC09826A
218 H. Jin, M. Ahn, S. Jeong, J. H. Han, D. Yoo, D. H. Son, and J. Cheon, Colloidal single-layer quantum dots with lateral confinement effects on 2D exciton, J. Am. Chem. Soc. 138(40), 13253 (2016)
https://doi.org/10.1021/jacs.6b06972
219 H. Jin, B. Baek, D. Kim, F. Wu, J. D. Batteas, J. Cheon, and D. H. Son, Effects of direct solvent-quantum dot interaction on the optical properties of colloidal monolayer WS2 quantum dots, Nano Lett. 17(12), 7471 (2017)
https://doi.org/10.1021/acs.nanolett.7b03381
220 H. Xu, Z. Ding, C. T. Nai, Y. Bao, F. Cheng, S. J. R. Tan, and K. P. Loh, Controllable synthesis of 2D and 1D MoS2 nanostructures on Au surface, Adv. Funct. Mater. 27, 1603887 (2017)
https://doi.org/10.1002/adfm.201603887
221 G. Wei, D. A. Czaplewski, E. J. Lenferink, T. K. Stanev, I. W. Jung, and N. P. Stern, Size-tunable lateral confinement in monolayer semiconductors, Sci. Rep. 7(1), 3324 (2017)
https://doi.org/10.1038/s41598-017-03594-z
222 G. Wei, E. J. Lenferink, D. A. Czaplewski, and N. P. Stern, Width-dependent photoluminescence and anisotropic Raman spectroscopy from monolayer MoS2 nanoribbons, arXiv: 1709.04001 (2017)
223 G. B. Liu, H. Pang, Y. Yao, and W. Yao, Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides, New J. Phys. 16(10), 105011 (2014)
https://doi.org/10.1088/1367-2630/16/10/105011
224 G. Wei, T. K. Stanev, D. A. Czewski, I. W. Jung, and N. P. Stern, Silicon-nitride photonic circuits interfaced with monolayer MoS2, Appl. Phys. Lett. 107(9), 091112 (2015)
https://doi.org/10.1063/1.4929779
225 J. Kim, X. Hong, C. Jin, S. F. Shi, C. Y. S. Chang, M. H. Chiu, L. J. Li, and F. Wang, Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers, Science 346(6214), 1205 (2014)
https://doi.org/10.1126/science.1258122
226 W. Liu, B. Lee, C. H. Naylor, H. S. Ee, J. Park, A. C. Johnson, and R. Agarwal, Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice, Nano Lett. 16(2), 1262 (2016)
https://doi.org/10.1021/acs.nanolett.5b04588
227 N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. Yeow, and T. Yu, Nonblinking, intense two-dimensional light emitter: Monolayer WS2 triangles, ACS Nano 7(12), 10985 (2013)
https://doi.org/10.1021/nn4046002
228 H. Wang, C. Zhang, and F. Rana, Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2, Nano Lett. 15(1), 339 (2015)
https://doi.org/10.1021/nl503636c
229 S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, Prospects for LED lighting, Nat. Photon. 3(4), 180 (2009)
https://doi.org/10.1038/nphoton.2009.32
230 T. Fujii, Y. Gao, R. Sharma, E. Hu, S. DenBaars, and S. Nakamura, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Appl. Phys. Lett. 84(6), 855 (2004)
https://doi.org/10.1063/1.1645992
231 X. Gan, Y. Gao, K. F. Mak, X. Yao, R. J. Shiue, A. van der Zande, M. E. Trusheim, F. Hatami, T. F. Heinz, J. Hone, et al., Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity, Appl. Phys. Lett. 103(18), 181119 (2013)
https://doi.org/10.1063/1.4826679
232 S. Wu, S. Buckley, A. M. Jones, J. S. Ross, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, F. Hatami, J. Vučković, A. Majumdar, and X. D. Xu, Control of two-dimensional excitonic light emission via photonic crystal, 2D Materials 1, 011001 (2014)
233 S. Schwarz, S. Dufferwiel, P. Walker, F. Withers, A. Trichet, M. Sich, F. Li, E. Chekhovich, D. Borisenko, N. N. Kolesnikov, K. S. Novoselov, et al., Two-dimensional metal–chalcogenide films in tunable optical microcavities, Nano Lett. 14(12), 7003 (2014)
https://doi.org/10.1021/nl503312x
234 Y. J. Noori, Y. Cao, J. Roberts, C. Woodhead, R. Bernardo-Gavito, P. Tovee, and R. J. Young, Photonic crystals for enhanced light extraction from 2D materials, ACS Photon. 3(12), 2515 (2016)
https://doi.org/10.1021/acsphotonics.6b00779
235 J. C. Reed, A. Y. Zhu, H. Zhu, F. Yi, and E.Cubukcu, Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter, Nano Lett. 15(3), 1967 (2015)
https://doi.org/10.1021/nl5048303
236 T. Ren, P. Song, J. Chen, and K. P. Loh, Whisper gallery modes in monolayer tungsten disulfidehexagonal boron nitride optical cavity, ACS Photon. 5(2), 353 (2018)
https://doi.org/10.1021/acsphotonics.7b01245
237 S. Hammer, H. M. Mangold, A. E. Nguyen, D. Martinez-Ta, S. Naghibi Alvillar, L. Bartels, and H. J. Krenner, Scalable and transfer-free fabrication of MoS2/SiO2 hybrid nanophotonic cavity arrays with quality factors exceeding 4000, Sci. Rep. 7(1), 7251 (2017)
https://doi.org/10.1038/s41598-017-07379-2
238 S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, Monolayer semiconductor nanocavity lasers with ultralow thresholds, Nature 520(7545), 69 (2015)
https://doi.org/10.1038/nature14290
239 A. Alduino and M. Paniccia, Wiring electronics with light,Nat. Photon. 1(3), 153 (2007)
https://doi.org/10.1038/nphoton.2007.17
240 H. J. Caulfield and S. Dolev, Why future supercomputing requires optics, Nat. Photon. 4(5), 261 (2010)
https://doi.org/10.1038/nphoton.2010.94
241 E. Murphy, Enabling optical communication, Nat. Photon. 4(5), 287 (2010)
https://doi.org/10.1038/nphoton.2010.107
242 O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, and Z. Mi, Optically pumped two-dimensional MoS2 lasers operating at room-temperature, Nano Lett. 15(8), 5302 (2015)
https://doi.org/10.1021/acs.nanolett.5b01665
243 H. Fang, J. Liu, H. Li, L. Zhou, L. Liu, J. Li, X. Wang, T. F. Krauss, and Y. Wang, 1305 nm MoTe2-on-silicon Laser, arXiv: 1710.01591 (2017)
244 Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Ning, Room-temperature continuouswave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity, Nat. Nanotechnol. 12(10), 987 (2017)
https://doi.org/10.1038/nnano.2017.128
245 S. Strauf and F. Jahnke, Single quantum dot nanolaser, Laser & Photon. Rev. 5, 607 (2011)
https://doi.org/10.1002/lpor.201000039
246 C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69(23), 3314 (1992)
https://doi.org/10.1103/PhysRevLett.69.3314
247 R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, Measurement of cavitypolariton dispersion curve from angle-resolved photoluminescence experiments, Phys. Rev. Lett. 73(15), 2043 (1994)
https://doi.org/10.1103/PhysRevLett.73.2043
248 H. Deng, H. Haug, and Y. Yamamoto, Exciton-polariton Bose–Einstein condensation, Rev. Mod. Phys. 82(2), 1489 (2010)
https://doi.org/10.1103/RevModPhys.82.1489
249 H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons, Science 298(5591), 199 (2002)
https://doi.org/10.1126/science.1074464
250 J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keeling, F. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Bose–Einstein condensation of exciton polaritons, Nature 443(7110), 409 (2006)
https://doi.org/10.1038/nature05131
251 R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Bose-Einstein condensation of microcavity polaritons in a trap, Science 316(5827), 1007 (2007)
https://doi.org/10.1126/science.1140990
252 S. Christopoulos, G. B. H. Von Högersthal, A. Grundy, P. Lagoudakis, A. Kavokin, J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, Room-temperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett. 98(12), 126405 (2007)
https://doi.org/10.1103/PhysRevLett.98.126405
253 J. Baumberg, A. Kavokin, S. Christopoulos, A. Grundy, R. Butté, G. Christmann, D. Solnyshkov, G. Malpuech, G. B. H. von Högersthal, E. Feltin, et al., Spontaneous polarization buildup in a room-temperature polariton laser, Phys. Rev. Lett. 101(13), 136409 (2008)
https://doi.org/10.1103/PhysRevLett.101.136409
254 S. Kéna-Cohen and S. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity, Nat. Photonics 4(6), 371 (2010)
https://doi.org/10.1038/nphoton.2010.86
255 T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, et al., Polariton lasing in a hybrid bulk ZnO microcavity, Appl. Phys. Lett. 99(16), 161104 (2011)
https://doi.org/10.1063/1.3650268
256 J. D. Plumhof, T. Stöferle, L. Mai, U. Scherf, and R. F. Mahrt, Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer, Nat. Mater. 13(3), 247 (2014)
https://doi.org/10.1038/nmat3825
257 T. C. Lu, Y. Y. Lai, Y. P. Lan, S. W. Huang, J. R. Chen, Y. C. Wu, W. F. Hsieh, and H. Deng, Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity, Opt. Express 20(5), 5530 (2012)
https://doi.org/10.1364/OE.20.005530
258 P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, Room temperature electrically injected polariton laser, Phys. Rev. Lett. 112(23), 236802 (2014)
https://doi.org/10.1103/PhysRevLett.112.236802
259 T. Liew, A. Kavokin, and I. Shelykh, Optical circuits based on polariton neurons in semiconductor microcavities, Phys. Rev. Lett. 101(1), 016402 (2008)
https://doi.org/10.1103/PhysRevLett.101.016402
260 A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, Exciton– polariton spin switches, Nat. Photon. 4(6), 361 (2010)
https://doi.org/10.1038/nphoton.2010.79
261 D. Sanvitto and S. Kéna-Cohen, The road towards polaritonic devices, Nat. Mater. 15(10), 1061 (2016)
https://doi.org/10.1038/nmat4668
262 S. Dufferwiel, S. Schwarz, F. Withers, A. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. Solnyshkov, et al., Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities, Nat. Commun. 6, 8579 (2015)
https://doi.org/10.1038/ncomms9579
263 M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, Fermi polaronpolaritons in charge-tunable atomically thin semiconductors, Nat. Phys. 13(3), 255 (2016)
264 S. Dufferwiel, T. Lyons, D. Solnyshkov, A. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. Smith, K. Novoselov, M. Skolnick, et al., Valley-addressable polaritons in atomically thin semiconductors, Nat. Photon. 11, 497 (2017)
https://doi.org/10.1038/nphoton.2017.125
265 L. C. Flatten, Z. He, D. M. Coles, A. A. P. Trichet, A. W. Powell, R. A. Taylor, J. H. Warner, and J. M. Smith, Room-temperature exciton-polaritons with twodimensional WS2, Sci. Rep. 6(1), 33134 (2016)
https://doi.org/10.1038/srep33134
266 L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2, Nat. Commun. 8, 14097 (2017)
https://doi.org/10.1038/ncomms14097
267 Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, Optical control of room-temperature valley polaritons, Nat. Photon. 11(8), 491 (2017)
https://doi.org/10.1038/nphoton.2017.121
268 X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, and X. Zhang, Control of coherently coupled exciton polaritons in monolayer Tungsten disulphide, Phys. Rev. Lett. 119(2), 027403 (2017)
https://doi.org/10.1103/PhysRevLett.119.027403
269 N. Lundt, S. Stoll, P. Nagler, A. Nalitov, S. Klembt, S. Betzold, J. Goddard, E. Frieling, A. Kavokin, C. Schüller, T. Korn, S. Höfling, and C. Schneider, Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature, Phys. Rev. B 96(24), 241403 (2017)
https://doi.org/10.1103/PhysRevB.96.241403
270 L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun. 9, 713 (2018)
https://doi.org/10.1038/s41467-018-03188-x
271 M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Tamm plasmon polaritons: Slow and spatially compact light, Appl. Phys. Lett. 92(25), 251112 (2008)
https://doi.org/10.1063/1.2952486
272 T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons, Appl. Phys. Lett. 110(5), 051101 (2017)
https://doi.org/10.1063/1.4974901
273 S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature, Nano Lett. 16(7), 4368 (2016)
https://doi.org/10.1021/acs.nanolett.6b01475
274 Z. Wang, R. Gogna, and H. Deng, What is the best planar cavity for maximizing coherent exciton-photon coupling, Appl. Phys. Lett. 111(6), 061102 (2017)
https://doi.org/10.1063/1.4997171
275 B. Zhang, Z. Wang, S. Brodbeck, C. Schneider, M. Kamp, S. Höing, and H. Deng, Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity, Light Sci. Appl. 3(1), e135 (2014)
https://doi.org/10.1038/lsa.2014.16
276 S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höing, and H. Deng, Coherent polariton laser, Phys. Rev. X 6(1), 011026 (2016)
https://doi.org/10.1103/PhysRevX.6.011026
277 G. Sallen, L. Bouet, X. Marie, G. Wang, C. Zhu, W. Han, Y. Lu, P. Tan, T. Amand, B. Liu, and B. Urbaszek, Robust optical emission polarization in MoS2 monolayers through selective valley excitation, Phys. Rev. B 86(8), 081301 (2012)
https://doi.org/10.1103/PhysRevB.86.081301
278 S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization, ACS Nano 7(3), 2768 (2013)
https://doi.org/10.1021/nn4002038
279 M. Z. Maialle, E. A. de Andrada e Silva, and L. J. Sham, Exciton spin dynamics in quantum wells, Phys. Rev. B 47(23), 15776 (1993)
https://doi.org/10.1103/PhysRevB.47.15776
280 E. Palacios, S. Park, S. Butun, L. Lauhon, and K. Aydin, Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna, Appl. Phys. Lett. 111(3), 031101 (2017)
https://doi.org/10.1063/1.4993427
281 Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A. Y. Joe, et al., Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons, Nat. Nanotechnol. 12(9), 856 (2017)
https://doi.org/10.1038/nnano.2017.106
282 J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals, Nano Lett. 17(8), 4689 (2017)
https://doi.org/10.1021/acs.nanolett.7b01344
283 E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions, Science 311(5758), 189 (2006)
https://doi.org/10.1126/science.1114849
284 J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9(3), 193 (2010)
https://doi.org/10.1038/nmat2630
285 A. F. Koenderink, A. Alù, and A. Polman, Nanophotonics: Shrinking light-based technology, Science 348(6234), 516 (2015)
https://doi.org/10.1126/science.1261243
286 K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, Ultrafast active plasmonics, Nat. Photon. 3(1), 55 (2009)
https://doi.org/10.1038/nphoton.2008.249
287 S. Palomba, M. Danckwerts, and L. Novotny, Nonlinear plasmonics with gold nanoparticle antennas, J. Opt. A 11(11), 114030 (2009)
https://doi.org/10.1088/1464-4258/11/11/114030
288 M. Kauranen and A. V. Zayats, Nonlinear plasmonics, Nat. Photon. 6(11), 737 (2012)
https://doi.org/10.1038/nphoton.2012.244
289 C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, Negative refraction, gain and nonlinear effects in hyperbolic metamaterials, Opt. Express 21(12), 15037 (2013)
https://doi.org/10.1364/OE.21.015037
290 P. Bharadwaj, B. Deutsch, and L. Novotny, Optical Antennas, Adv. Opt. Photon. 1(3), 438 (2009)
https://doi.org/10.1364/AOP.1.000438
291 L. Novotny and N. Van Hulst, Antennas for light, Nat. Photon. 5(2), 83 (2011)
https://doi.org/10.1038/nphoton.2010.237
292 A. F. Koenderink, Single-photon nanoantennas, ACS Photon. 4(4), 710 (2017)
https://doi.org/10.1021/acsphotonics.7b00061
293 A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev. 27(4), 241 (1998)
https://doi.org/10.1039/a827241z
294 A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, Surface-enhanced Raman scattering, J. Phys.: Condens. Matter 4(5), 1143 (1992)
https://doi.org/10.1088/0953-8984/4/5/001
295 P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem. 1(1), 601 (2008)
https://doi.org/10.1146/annurev.anchem.1.031207.112814
296 E. Palacios, S. Park, L. Lauhon, and K. Aydin, Identifying excitation and emission rate contributions to plasmon-enhanced photoluminescence from monolayer MoS2 using a tapered gold nanoantenna, ACS Photon. 4(7), 1602 (2017)
https://doi.org/10.1021/acsphotonics.7b00226
297 M. Wang, W. Li, L. Scarabelli, B. B. Rajeeva, M. Terrones, L. M. Liz-Marzán, D. Akinwande, and Y. Zheng, Plasmon–trion and plasmon–exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2, Nanoscale 9(37), 13947 (2017)
https://doi.org/10.1039/C7NR03909C
298 I. Abid, A. Bohloul, S. Najmaei, C. Avendano, H. L. Liu, R. Péchou, A. Mlayah, and J. Lou, Resonant surface plasmon–exciton interaction in hybrid MoSe2 @Au nanostructures, Nanoscale 8(15), 8151 (2016)
https://doi.org/10.1039/C6NR00829A
299 M. G. Lee, S. Yoo, T. Kim, and Q. H. Park, Large-area plasmon enhanced two-dimensional MoS2, Nanoscale 9(42), 16244 (2017)
https://doi.org/10.1039/C7NR04974A
300 J. Huang, G. M. Akselrod, T. Ming, J. Kong, and M. H. Mikkelsen, Tailored emission spectrum of 2D semiconductors using plasmonic nanocavities, ACS Photon. 5(2), 552 (2017)
https://doi.org/10.1021/acsphotonics.7b01085
301 I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures, ACS Photon. 4(7), 1653 (2017)
https://doi.org/10.1021/acsphotonics.6b00957
302 A. Boulesbaa, V. E. Babicheva, K. Wang, I. I. Kravchenko, M. W. Lin, M. Mahjouri-Samani, C. B. Jacobs, A. A. Puretzky, K. Xiao, I. Ivanov, et al., Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays, ACS Photon. 3(12), 2389 (2016)
303 A. D. Johnson, F. Cheng, Y. Tsai, and C. K. Shih, Giant enhancement of defect-bound exciton luminescence and suppression of band-edge luminescence in monolayer WSe2–Ag plasmonic hybrid structures,Nano Lett. 17(7), 4317 (2017)
https://doi.org/10.1021/acs.nanolett.7b01364
304 Z. Li, Y. Li, T. Han, X. Wang, Y. Yu, B. Tay, Z. Liu, and Z. Fang, Tailoring MoS2 exciton-plasmon interaction by optical spin-orbit coupling, ACS Nano 11(2), 1165 (2016)
https://doi.org/10.1021/acsnano.6b06834
305 H. Y. Jeong, U. J. Kim, H. Kim, G. H. Han, H. Lee, M. S. Kim, Y. Jin, T. H. Ly, S. Y. Lee, Y.G. Roh, et al., Optical gain in MoS2 via coupling with nanostructured substrate: Fabry–Perot interference and plasmonic excitation, ACS Nano 10, 8192 (2016)
https://doi.org/10.1021/acsnano.6b03237
306 B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. C. Johnson, and R. Agarwal, Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice, Nano Lett. 17(7), 4541 (2017)
https://doi.org/10.1021/acs.nanolett.7b02245
307 M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity, ACS Photon. 5(1), 240 (2018)
https://doi.org/10.1021/acsphotonics.7b00717
308 M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. Pury, C. Groβe, B. Nijs, J. Mertens, et al, Strong-coupling of WSe2 in ultracompact plasmonic nanocavities at room temperature, Nat. Commun. 8(1), 1296 (2017)
https://doi.org/10.1038/s41467-017-01398-3
309 D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2, Nano Lett. 17(6), 3809 (2017)
https://doi.org/10.1021/acs.nanolett.7b01176
310 J. Cuadra, D. G. Baranov, M. Wersll, R. Verre, T. J. Antosiewicz, and T. Shegai, Observation of tunable charged exciton polaritons in hybrid monolayer WS2- plasmonic nanoantenna system, Nano Lett. 18(3), 1777 (2018)
https://doi.org/10.1021/acs.nanolett.7b04965
311 P. Gonçalves, L. Bertelsen, S. Xiao, and N. A. Mortensen, Plasmon-exciton polaritons in twodimensional semiconductor/metal interfaces, Phys. Rev. B 97(4), 041402 (2018)
https://doi.org/10.1103/PhysRevB.97.041402
312 J. H. Shirley, Solution of the Schrödinger equation with a hamiltonian periodic in time, Phys. Rev. 138, B979 (1965)
https://doi.org/10.1103/PhysRev.138.B979
313 E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, Valley-selective optical Stark effect in monolayer WS2, Nat. Mater. 14(3), 290 (2015)
https://doi.org/10.1038/nmat4156
314 E. J. Sie, C. H. Lui, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, Large, valley-exclusive Bloch–Siegert shift in monolayer WS2, Science 355(6329), 1066 (2017)
https://doi.org/10.1126/science.aal2241
315 T. LaMountain, H. Bergeron, I. Balla, T. K. Stanev, M. C. Hersam, and N. P. Stern, Valley-selective optical Stark effect probed by Kerr rotation, Phys. Rev. B 97(4), 045307 (2018)
https://doi.org/10.1103/PhysRevB.97.045307
316 S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M. H. Jo, and H. Choi, Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2, Nat. Commun. 7, 13569 (2016)
https://doi.org/10.1038/ncomms13569
317 A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. Masselink, and H. Morkoc, “Dressed excitons” in a multiple-quantum-well structure: Evidence for an optical stark effect with femtosecond response time, Phys. Rev. Lett. 56(25), 2748 (1986)
https://doi.org/10.1103/PhysRevLett.56.2748
318 A. Von Lehmen, D. S. Chemla, J. Heritage, and J. Zucker, Optical Stark effect on excitons in GaAs quantum wells, Opt. Lett. 11(10), 609 (1986)
https://doi.org/10.1364/OL.11.000609
319 W. Knox, D. Chemla, D. Miller, J. Stark, and S. Schmitt-Rink, Femtosecond ac Stark effect in semiconductor quantum wells: Extreme low- and high-intensity limits, Phys. Rev. Lett. 62(10), 1189 (1989)
https://doi.org/10.1103/PhysRevLett.62.1189
320 D. Chemla, W. Knox, D. Miller, S. Schmitt-Rink, J. Stark, and R. Zimmermann, The excitonic optical stark effect in semiconductor quantum wells probed with femtosecond optical pulses, J. Lumen. 44, 233 (1989)
https://doi.org/10.1016/0022-2313(89)90060-4
321 E. J. Sie, C. H. Lui, Y. H. Lee, J. Kong, and N. Gedik, Observation of intervalley biexcitonic optical Stark effect in monolayer WS2, Nano Lett. 16(12), 7421 (2016)
https://doi.org/10.1021/acs.nanolett.6b02998
322 E. J. Sie, A. J. Frenzel, Y. H. Lee, J. Kong, and N. Gedik, Intervalley biexcitons and many-body effects in monolayer MoS2, Phys. Rev. B 92(12), 125417 (2015)
https://doi.org/10.1103/PhysRevB.92.125417
323 T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, Optical Stark effect in a quantum dot: Ultrafast control of single exciton polarizations, Phys. Rev. Lett. 92(15), 157401 (2004)
https://doi.org/10.1103/PhysRevLett.92.157401
324 D. D. Awschalom and N. Samarth, in: Semiconductor Spintronics and Quantum Computation, Springer, 2002, pp 147–193
https://doi.org/10.1007/978-3-662-05003-3_5
325 J. Gupta, R. Knobel, N. Samarth, and D. Awschalom, Ultrafast manipulation of electron spin coherence, Science 292(5526), 2458 (2001)
https://doi.org/10.1126/science.1061169
326 D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses, Nature 456(7219), 218 (2008)
https://doi.org/10.1038/nature07530
327 J. Berezovsky, M. Mikkelsen, N. Stoltz, L. Coldren, and D. Awschalom, Picosecond coherent optical manipulation of a single electron spin in a quantum dot, Science 320(5874), 349 (2008)
https://doi.org/10.1126/science.1154798
328 M. Mikkelsen, J. Berezovsky, and D. Awschalom, Ultrafast optical manipulation of single electron spins in quantum dots, Solid State Commun. 149(35–36), 1451 (2009)
https://doi.org/10.1016/j.ssc.2009.04.038
329 D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
https://doi.org/10.1103/PhysRevA.57.120
330 G. Moody, C. K. Dass, K. Hao, C. H. Chen, L. J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun. 6(1), 8315 (2015)
https://doi.org/10.1038/ncomms9315
331 P. Dey, J. Paul, Z. Wang, C. Stevens, C. Liu, A. Romero, J. Shan, D. Hilton, and D. Karaiskaj, Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron-phonon interactions, Phys. Rev. Lett. 116(12), 127402 (2016)
https://doi.org/10.1103/PhysRevLett.116.127402
332 L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, On-chip optical isolation in monolithically integrated non-reciprocal optical resonators, Nat. Photon. 5(12), 758 (2011)
https://doi.org/10.1038/nphoton.2011.270
333 E. J. Lenferink, G. Wei, and N. P. Stern, Coherent optical non-reciprocity in axisymmetric resonators, Opt. Express 22(13), 16099 (2014)
https://doi.org/10.1364/OE.22.016099
334 M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, Quantum optical circulator controlled by a single chirally coupled atom, Science 354(6319), 1577 (2016)
https://doi.org/10.1126/science.aaj2118
335 D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao, K.M. C. Fu, and X. Xu, Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics, Sci. Adv. 3(5), e1603113 (2017)
https://doi.org/10.1126/sciadv.1603113
336 A. Kavokin, G. Malpuech, and M. Glazov, Optical spin Hall effect,Phys. Rev. Lett. 95(13), 136601 (2005)
https://doi.org/10.1103/PhysRevLett.95.136601
337 O. Bleu, D. Solnyshkov, and G. Malpuech, Optical valley Hall effect based on transitional metal dichalcogenide cavity polaritons, Phys. Rev. B 96(16), 165432 (2017)
https://doi.org/10.1103/PhysRevB.96.165432
338 T. Karzig, C. E. Bardyn, N. H. Lindner, and G. Refael, Topological polaritons, Phys. Rev. X 5(3), 031001 (2015)
https://doi.org/10.1103/PhysRevX.5.031001
339 Y. V. Kartashov and D. V. Skryabin, Bistable topological insulator with exciton-polaritons, Phys. Rev. Lett. 119(25), 253904 (2017)
https://doi.org/10.1103/PhysRevLett.119.253904
340 N. Gippius, I. Shelykh, D. Solnyshkov, S. Gavrilov, Y. G. Rubo, A. Kavokin, S. Tikhodeev, and G. Malpuech, Polarization multistability of cavity polaritons, Phys. Rev. Lett. 98(23), 236401 (2007)
https://doi.org/10.1103/PhysRevLett.98.236401
341 T. Paraïso, M. Wouters, Y. Léger, F. Morier-Genoud, and B. Deveaud-Plédran, Multistability of a coherent spin ensemble in a semiconductor microcavity, Nat. Mater. 9(8), 655 (2010)
https://doi.org/10.1038/nmat2787
342 V. M. Menon, L. I. Deych, and A. A. Lisyansky, Towards polaritonic logic circuits, Nat. Photon. 4(6), 345 (2010)
https://doi.org/10.1038/nphoton.2010.130
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed