Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 130315   https://doi.org/10.1007/s11467-018-0801-3
  本期目录
General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics
Hong Wang2,1, Bao-Cang Ren1(), Ai Hua Wang1, Ahmed Alsaedi3, Tasawar Hayat3,4, Fu-Guo Deng2,3
1. Department of Physics, Capital Normal University, Beijing 100048, China
2. Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
3. NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
4. Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan
 全文: PDF(319 KB)  
Abstract

Hyperentanglement has attracted considerable attention recently because of its high-capacity for longdistance quantum communication. In this study, we present a hyperentanglement concentration protocol (hyper-ECP) for nonlocal three-photon systems in the polarization, spatial-mode, and timebin partially hyperentangled Greenberger–Horne–Zeilinger (GHZ) states using the Schmidt projection method. In our hyper-ECP, the three distant parties must perform the parity-check measurements on the polarization, spatial-mode, and time-bin degrees of freedom, respectively, using linear optical elements and Pockels cells, and only two identical nonlocal photon systems are required. This hyper-ECP can be directly extended to the N-photon hyperentangled GHZ states, and the success probability of this general hyper-ECP for a nonlocal N-photon system is the optimal one, regardless of the photon number N.

Key wordshyperentanglement concentration    linear optics    long-distance quantum communication    high-capacity    polarization-spatial-time-bin hyperentanglement
收稿日期: 2018-03-14      出版日期: 2018-06-13
Corresponding Author(s): Bao-Cang Ren   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 130315.
Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics. Front. Phys. , 2018, 13(5): 130315.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0801-3
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/130315
1 C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
2 X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)
https://doi.org/10.1007/s11467-014-0432-2
3 P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
https://doi.org/10.1007/s11467-016-0553-x
4 C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on Einstein–Podolsky– Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)
https://doi.org/10.1103/PhysRevLett.69.2881
5 X. S. Liu, G. L. Long, D. M. Tong, and F. Li, General scheme for superdense coding between multiparties, Phys. Rev. A 65(2), 022304 (2002)
https://doi.org/10.1103/PhysRevA.65.022304
6 A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
7 C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett. 68(5), 557 (1992)
https://doi.org/10.1103/PhysRevLett.68.557
8 X. H. Li, F. G. Deng, and H. Y. Zhou, Efficient quantum key distribution over a collective noise channel, Phys. Rev. A 78(2), 022321 (2008)
https://doi.org/10.1103/PhysRevA.78.022321
9 F. Steinlechner, S. Ecker, M. Fink, B. Liu, J. Bavaresco, M. Huber, T. Scheidl, and R. Ursin, Distribution of high-dimensional entanglement via an intra-city freespace link, Nat. Commun. 8, 15971 (2017)
https://doi.org/10.1038/ncomms15971
10 M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
11 G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
12 F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
13 F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A 69(5), 052319 (2004)
https://doi.org/10.1103/PhysRevA.69.052319
14 J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144 (2016)
https://doi.org/10.1038/lsa.2016.144
15 W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)
https://doi.org/10.1103/PhysRevLett.118.220501
16 X. H. Li, Quantum secure direct communication, Acta Physica Sinica 64, 160307 (2015)
17 F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, Experimental long-distance quantum secure direct communication, Sci. Bull. 62(22), 1519 (2017)
https://doi.org/10.1016/j.scib.2017.10.023
18 L. Zhou and Y. B. Sheng, Recyclable amplification protocol for the single-photon entangled state, Laser Phys. Lett. 12(4), 045203 (2015)
https://doi.org/10.1088/1612-2011/12/4/045203
19 L. Zhou and Y. B. Sheng, Complete logic Bell-state analysis assisted with photonic Faraday rotation, Phys. Rev. A 92(4), 042314 (2015)
https://doi.org/10.1103/PhysRevA.92.042314
20 Y. B. Sheng and L. Zhou, Two-step complete polarization logic Bell-state analysis, Sci. Rep. 5(1), 13453 (2015)
https://doi.org/10.1038/srep13453
21 P. G. Kwiat, Hyper-entangled states, J. Mod. Opt. 44(11–12), 2173 (1997)
https://doi.org/10.1080/09500349708231877
22 T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, M. Żukowski, Z. B. Chen, and J. W. Pan, All-versusnothing violation of local realism by two-photon, fourdimensional entanglement, Phys. Rev. Lett. 95(24), 240406 (2005)
https://doi.org/10.1103/PhysRevLett.95.240406
23 J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
https://doi.org/10.1103/PhysRevLett.95.260501
24 M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, Polarization-momentum hyperentangled states: realization and characterization, Phys. Rev. A 72(5), 052110 (2005)
https://doi.org/10.1103/PhysRevA.72.052110
25 R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, Experimental entanglement and nonlocality of a two-photon six-qubit cluster state, Phys. Rev. Lett. 103(16), 160401 (2009)
https://doi.org/10.1103/PhysRevLett.103.160401
26 G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79(3), 030301 (2009)
https://doi.org/10.1103/PhysRevA.79.030301
27 D. Bhatti, J. von Zanthier, and G. S. Agarwal, Entanglement of polarization and orbital angular momentum, Phys. Rev. A 91(6), 062303 (2015)
https://doi.org/10.1103/PhysRevA.91.062303
28 F. G. Deng, B. C. Ren, and X. H. Li, Quantum hyperentanglement and its applications in quantum information processing, Sci. Bull. 62(1), 46 (2017)
https://doi.org/10.1016/j.scib.2016.11.007
29 B. C. Ren and F. G. Deng, Hyper-parallel photonic quantum computation with coupled quantum dots, Sci. Rep. 4(1), 4623 (2015)
https://doi.org/10.1038/srep04623
30 B. C. Ren, G. Y. Wang, and F. G. Deng, Universal hyperparallel hybrid photonic quantum gates with dipoleinduced transparency in the weak-coupling regime, 91(3), 032328 (2015)
https://doi.org/10.1103/PhysRevA.91.032328
31 T. Li and G. L. Long, Hyperparallel optical Phys. Rev. Aquantum computation assisted by atomic ensembles embedded in double-sided optical cavities, Phys. Rev. A 94(2), 022343 (2016)
https://doi.org/10.1103/PhysRevA.94.022343
32 H. R. Wei, F. G. Deng, and G. L. Long, Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities, Opt. Express 24(16), 18619 (2016)
https://doi.org/10.1364/OE.24.018619
33 B. C. Ren and F. G. Deng, Robust hyperparallel photonic quantum entangling gate with cavity QED, Opt. Express 25(10), 10863 (2017)
https://doi.org/10.1364/OE.25.010863
34 Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)
https://doi.org/10.1103/PhysRevA.82.032318
35 B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)
https://doi.org/10.1364/OE.20.024664
36 T. C. Wei, J. T. Barreiro, and P. G. Kwiat, Hyperentangled Bell-state analysis, Phys. Rev. A 75(6), 060305 (2007)
https://doi.org/10.1103/PhysRevA.75.060305
37 T. J. Wang, Y. Lu, and G. L. Long, Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities, Phys. Rev. A 86(4), 042337 (2012)
https://doi.org/10.1103/PhysRevA.86.042337
38 Q. Liu and M. Zhang, Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators, Phys. Rev. A 91(6), 062321 (2015)
https://doi.org/10.1103/PhysRevA.91.062321
39 G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities, Opt. Express 24(25), 28444 (2016)
https://doi.org/10.1364/OE.24.028444
40 T. J. Wang, S. Y. Song, and G. L. Long, Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities, Phys. Rev. A 85(6), 062311 (2012)
https://doi.org/10.1103/PhysRevA.85.062311
41 P. G. Kwiat and H. Weinfurter, Embedded Bell-state analysis, Phys. Rev. A 58(4), R2623 (1998)
https://doi.org/10.1103/PhysRevA.58.R2623
42 S. P. Walborn, S. P’adua, and C. H. Monken, Hyperentanglement-assisted Bell-state analysis, Phys. Rev. A 68(4), 042313 (2003)
https://doi.org/10.1103/PhysRevA.68.042313
43 C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Complete deterministic linear optics Bell state analysis, Phys. Rev. Lett. 96(19), 190501 (2006)
https://doi.org/10.1103/PhysRevLett.96.190501
44 M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, Complete and detrministic deicrimination of polarization Bell states assisted by momentum entanglement, Phys. Rev. A 75(4), 042317 (2007)
https://doi.org/10.1103/PhysRevA.75.042317
45 Y. B. Sheng and F. G. Deng, Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentangledment, Phys. Rev. A 81(3), 032307 (2010)
https://doi.org/10.1103/PhysRevA.81.032307
46 Y. B. Sheng and F. G. Deng, One-step deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82(4), 044305 (2010)
https://doi.org/10.1103/PhysRevA.82.044305
47 X. H. Li, Deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82(4), 044304 (2010)
https://doi.org/10.1103/PhysRevA.82.044304
48 F. G. Deng, One-step error correction for multipartite polarization entanglement, Phys. Rev. A 83(6), 062316 (2011)
https://doi.org/10.1103/PhysRevA.83.062316
49 Y. B. Sheng and L. Zhou, Deterministic polarization entanglement purification using time-bin entanglement, Laser Phys. Lett. 11(8), 085203 (2014)
https://doi.org/10.1088/1612-2011/11/8/085203
50 B. C. Ren, F. F. Du, and F. G. Deng, Twostep hyperentanglement purification with the quantumstatejoining method, Phys. Rev. A 90(5), 052309 (2014)
https://doi.org/10.1103/PhysRevA.90.052309
51 G. Y. Wang, Q. Liu, and F. G. Deng, Hyperentanglement purification for two-photon six-qubit quantum systems, Phys. Rev. A 94(3), 032319 (2016)
https://doi.org/10.1103/PhysRevA.94.032319
52 C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53(4), 2046 (1996)
https://doi.org/10.1103/PhysRevA.53.2046
53 Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A 64(1), 014301 (2001)
https://doi.org/10.1103/PhysRevA.64.014301
54 T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)
https://doi.org/10.1103/PhysRevA.64.012304
55 Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics, Phys. Rev. A 77(6), 062325 (2008)
https://doi.org/10.1103/PhysRevA.77.062325
56 C. Wang, Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system, Phys. Rev. A 86(1), 012323 (2012)
https://doi.org/10.1103/PhysRevA.86.012323
57 S. Bose, V. Vedral, and P. L. Knight, Purification via entanglement swapping and conserved entanglement, Phys. Rev. A 60(1), 194 (1999)
https://doi.org/10.1103/PhysRevA.60.194
58 B. S. Shi, Y. K. Jiang, and G. C. Guo, Optimal entanglement purification via entanglement swapping, Phys. Rev. A 62(5), 054301 (2000)
https://doi.org/10.1103/PhysRevA.62.054301
59 Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)
https://doi.org/10.1103/PhysRevA.85.012307
60 F. G. Deng, Optimal nonlocal multipartite entanglement concentration based on projection measurements,Phys. Rev. A 85(2), 022311 (2012)
https://doi.org/10.1103/PhysRevA.85.022311
61 Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient twostep entanglement concentration for arbitraryWstates, Phys. Rev. A 85(4), 042302 (2012)
https://doi.org/10.1103/PhysRevA.85.042302
62 C. Cao, C. Wang, L. Y. He, and R. Zhang, Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime, Opt. Express 21(4), 4093 (2013)
https://doi.org/10.1364/OE.21.004093
63 X. Yan, Y. F. Yu, and Z. M. Zhang, Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9(5), 640 (2014)
https://doi.org/10.1007/s11467-014-0435-z
64 C. Cao, H. Ding, Y. Li, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems, Quantum Inform. Process. 14(4), 1265 (2015)
https://doi.org/10.1007/s11128-015-0924-1
65 C. Wang, W. W. Shen, S. C. Mi, Y. Zhang, and T. J. Wang, Concentration and distribution of entanglement based on valley qubits system in graphene, Sci. Bull. 60(23), 2016 (2015)
https://doi.org/10.1007/s11434-015-0941-6
66 C. Cao, T. J. Wang, R. Zhang, and C. Wang, Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace, Laser Phys. Lett. 12(3), 036001 (2015)
https://doi.org/10.1088/1612-2011/12/3/036001
67 Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, Efficient N-particle W state concentration with different parity check gates, Sci. China Phys. Mech. Astron. 58(6), 060301 (2015)
https://doi.org/10.1007/s11433-015-5672-9
68 C. Shukla, A. Banerjee, and A. Pathak, Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states, Quantum Inform. Process. 14(6), 2077 (2015)
https://doi.org/10.1007/s11128-015-0948-6
69 J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang, Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity, Quantum Inform. Process. 15(4), 1669 (2016)
https://doi.org/10.1007/s11128-016-1246-7
70 C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements, Sci. China Phys. Mech. Astron. 59(10), 100315 (2016)
https://doi.org/10.1007/s11433-016-0253-x
71 B. C. Ren, F. F. Du, and F. G. Deng, Hyperentanglement concentration for two-photon four-qubit systems with linear optics, Phys. Rev. A 88(1), 012302 (2013)
https://doi.org/10.1103/PhysRevA.88.012302
72 B. C. Ren and F. G. Deng, Hyperentanglement purication and concentration assisted by diamond NV centers inside photonic crystal cavities, Laser Phys. Lett. 10(11), 115201 (2013)
https://doi.org/10.1088/1612-2011/10/11/115201
73 B. C. Ren and G. L. Long, General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities, Opt. Express 22(6), 6547 (2014)
https://doi.org/10.1364/OE.22.006547
74 X. H. Li and S. Ghose, Hyperconcentration for multipartite entanglement via linear optics, Laser Phys. Lett. 11(12), 125201 (2014)
https://doi.org/10.1088/1612-2011/11/12/125201
75 X. H. Li and S. Ghose, Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity, Opt. Express 23(3), 3550 (2015)
https://doi.org/10.1364/OE.23.003550
76 B. C. Ren and G. L. Long, Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates, Sci. Rep. 5(1), 16444 (2015)
https://doi.org/10.1038/srep16444
77 X. H. Li and S. Ghose, Hyperentanglement concentration for time-bin and polarization hyperentangled photons, Phys. Rev. A 91(6), 062302 (2015)
https://doi.org/10.1103/PhysRevA.91.062302
78 C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, Nonlocal hyperconcentration on entangled photons using photonic module system, Ann. Phys. 369, 128 (2016)
https://doi.org/10.1016/j.aop.2016.03.003
79 L. L. Fan, Y. Xia, and J. Song, Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics, Quantum Inform. Process. 13(9), 1967 (2014)
https://doi.org/10.1007/s11128-014-0789-8
80 H. J. Liu, Y. Xia, and J. Song, Efficient hyperentanglement concentration for N-particle Greenberger–Horne– Zeilinger state assisted by weak cross-Kerr nonlinearity, Quantum Inform. Process. 15(5), 2033 (2016)
https://doi.org/10.1007/s11128-016-1258-3
81 F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states, Sci. China Phys. Mech. Astron. 60(12), 120313 (2017)
https://doi.org/10.1007/s11433-017-9100-9
82 Y. Soudagar, F. Bussières, G. Berlín, S. Lacroix, J. M. Fernandez, and N. Godbout, Cluster-state quantum computing in optical fibers, J. Opt. Soc. Am. B 24(2), 226 (2007)
https://doi.org/10.1364/JOSAB.24.000226
83 D. Kalamidas, Single-photon quantum error rejection and correction with linear optics, Phys. Lett. A 343(5), 331 (2005)
https://doi.org/10.1016/j.physleta.2005.06.034
84 B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Hyperentanglement concentration of nonlocal two photon six-qubit systems with linear optics, Ann. Phys. 385, 86 (2017)
https://doi.org/10.1016/j.aop.2017.07.013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed