Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (4): 130701   https://doi.org/10.1007/s11467-018-0804-0
  本期目录
Quantifying quantum correlation via quantum coherence
Guang-Yong Zhou, Lin-Jian Huang, Jun-Ya Pan, Li-Yun Hu, Jie-Hui Huang()
College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
 全文: PDF(132 KB)  
Abstract

Resource theory is applied to quantify the quantum correlation of a bipartite state and a computable measure is proposed. Since this measure is based on quantum coherence, we present another possible physical meaning for quantum correlation, i.e., the minimum quantum coherence achieved under local unitary transformations. This measure satisfies the basic requirements for quantifying quantum correlation and coincides with concurrence for pure states. Since no optimization is involved in the final definition, this measure is easy to compute irrespective of the Hilbert space dimension of the bipartite state.

Key wordsresource theory    quantum correlation    quantum coherence
收稿日期: 2017-12-28      出版日期: 2018-06-29
Corresponding Author(s): Jie-Hui Huang   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(4): 130701.
Guang-Yong Zhou, Lin-Jian Huang, Jun-Ya Pan, Li-Yun Hu, Jie-Hui Huang. Quantifying quantum correlation via quantum coherence. Front. Phys. , 2018, 13(4): 130701.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0804-0
https://academic.hep.com.cn/fop/CN/Y2018/V13/I4/130701
1 E. Knill and R. Laflamme, Power of one bit of quantum information, Phys. Rev. Lett. 81(25), 5672 (1998)
https://doi.org/10.1103/PhysRevLett.81.5672
2 A. Datta, A. Shaji, and C. M. Caves, Quantum discord and the power of one qubit, Phys. Rev. Lett. 100(5), 050502 (2008)
https://doi.org/10.1103/PhysRevLett.100.050502
3 B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, Experimental quantum computing without entanglement, Phys. Rev. Lett. 101(20), 200501 (2008)
https://doi.org/10.1103/PhysRevLett.101.200501
4 H. Ollivier and W. H. Zurek, Quantum discord: A measure of the quantumness of correlations, Phys. Rev. Lett. 88(1), 017901 (2001)
https://doi.org/10.1103/PhysRevLett.88.017901
5 G. Gour and R. W. Spekkens, The resource theory of quantum reference frames: Manipulations and monotones, New J. Phys. 10(3), 033023 (2008)
https://doi.org/10.1088/1367-2630/10/3/033023
6 F. G. S. L. Brandão and G. Gour, Reversible framework for quantum resource theories, Phys. Rev. Lett. 115(7), 070503 (2015)
https://doi.org/10.1103/PhysRevLett.115.070503
7 B. Coecke, T. Fritz, and R. W. Spekkens, A mathematical theory of resources, Inf. Comput. 250, 59 (2016)
https://doi.org/10.1016/j.ic.2016.02.008
8 R. Demkowicz-Dobrzański and L. Maccone, Using entanglement against noise in quantum metrology, Phys. Rev. Lett. 113(25), 250801 (2014)
https://doi.org/10.1103/PhysRevLett.113.250801
9 J. Åberg, Catalytic coherence, Phys. Rev. Lett. 113(15), 150402 (2014)
https://doi.org/10.1103/PhysRevLett.113.150402
10 V. Narasimhachar and G. Gour, Low-temperature thermodynamics with quantum coherence, Nat. Commun. 6(1), 7689 (2015)
https://doi.org/10.1038/ncomms8689
11 P. Ćwikliński, M. Studziński, M. Horodecki, and J. Oppenheim, Limitations on the evolution of quantum coherences: Towards fully quantum second laws of thermodynamics, Phys. Rev. Lett. 115(21), 210403 (2015)
https://doi.org/10.1103/PhysRevLett.115.210403
12 M. Lostaglio, D. Jennings, and T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy, Nat. Commun. 6(1), 6383 (2015)
https://doi.org/10.1038/ncomms7383
13 M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, Quantum coherence, time-translation symmetry, and thermodynamics, Phys. Rev. X 5(2), 021001 (2015)
https://doi.org/10.1103/PhysRevX.5.021001
14 I. Marvian and R. W. Spekkens, Extending Noether’s theorem by quantifying the asymmetry of quantum states, Nat. Commun. 5(1), 3821 (2014)
https://doi.org/10.1038/ncomms4821
15 F. Levi and F. Mintert, A quantitative theory of coherent delocalization, New J. Phys. 16(3), 033007 (2014)
https://doi.org/10.1088/1367-2630/16/3/033007
16 L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Dynamics of coherence-induced state ordering under Markovian channels, Front. Phys. 13(5), 130310 (2018)
https://doi.org/10.1007/s11467-018-0780-4
17 T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113(14), 140401 (2014)
https://doi.org/10.1103/PhysRevLett.113.140401
18 X. D. Yu, D. J. Zhang, G. F. Xu, and D. M. Tong, Alternative framework for quantifying coherence,Phys. Rev. A 94(6), 060302(R) (2016)
19 X. Yuan, H. Zhou, Z. Cao, and X. Ma, Intrinsic randomness as a measure of quantum coherence, Phys. Rev. A 92(2), 022124 (2015)
https://doi.org/10.1103/PhysRevA.92.022124
20 A. Winter and D. Yang, Operational resource theory of coherence, Phys. Rev. Lett. 116(12), 120404 (2016)
https://doi.org/10.1103/PhysRevLett.116.120404
21 Y. Yao, X. Xiao, L. Ge, and C. P. Sun, Quantum coherence in multipartite systems, Phys. Rev. A 92(2), 022112 (2015)
https://doi.org/10.1103/PhysRevA.92.022112
22 Z. Xi, Y. Li, and H. Fan, Quantum coherence and correlations in quantum system, Sci. Rep. 5(1), 10922 (2015)
https://doi.org/10.1038/srep10922
23 J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, Converting coherence to quantum correlations, Phys. Rev. Lett. 116(16), 160407 (2016)
https://doi.org/10.1103/PhysRevLett.116.160407
24 C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, and T. Byrnes, Distribution of quantum coherence in multipartite systems, Phys. Rev. Lett. 116(15), 150504 (2016)
https://doi.org/10.1103/PhysRevLett.116.150504
25 T. R. Bromley, M. Cianciaruso, and G. Adesso, Frozen quantum coherence, Phys. Rev. Lett. 114(21), 210401 (2015)
https://doi.org/10.1103/PhysRevLett.114.210401
26 X. D. Yu, D. J. Zhang, C. L. Liu, and D. M. Tong, Measure-independent freezing of quantum coherence, Phys. Rev. A 93(6), 060303 (2016)
https://doi.org/10.1103/PhysRevA.93.060303
27 E. Chitambar, A. Streltsov, S. Rana, M. N. Bera, G. Adesso, and M. Lewenstein, Assisted distillation of quantum coherence, Phys. Rev. Lett. 116(7), 070402 (2016)
https://doi.org/10.1103/PhysRevLett.116.070402
28 R. A. Horn and C. R. Johnson, Matrix Analysis, Chaps. 2, 5 and 7, New York: Cambridge University Press, 1985
https://doi.org/10.1017/CBO9780511810817
29 A. Brodutch and K. Modi, Criteria for measures of quantum correlations, Quantum Inf. Comput. 12, 721 (2012)
30 W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
https://doi.org/10.1103/PhysRevLett.80.2245
31 P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn, Universal state inversion and concurrence in arbitrary dimensions, Phys. Rev. A 64(4), 042315 (2001)
https://doi.org/10.1103/PhysRevA.64.042315
32 E. Chitambar and M. H. Hsieh, Relating the resource theories of entanglement and quantum coherence, Phys. Rev. Lett. 117(2), 020402 (2016)
https://doi.org/10.1103/PhysRevLett.117.020402
33 A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Measuring quantum coherence with entanglement, Phys. Rev. Lett. 115(2), 020403 (2015)
https://doi.org/10.1103/PhysRevLett.115.020403
34 J. J. Ma, B. Yadin, D. Girolami, V. Vedral, and M. Gu, Converting coherence to quantum correlations, Phys. Rev. Lett. 116(16), 160407 (2016)
https://doi.org/10.1103/PhysRevLett.116.160407
35 B. Dakić, V. Vedral, and Ç. Brukner, Necessary and sufficient condition for nonzero quantum discord, Phys. Rev. Lett. 105(19), 190502 (2010)
https://doi.org/10.1103/PhysRevLett.105.190502
36 J. H. Huang, L. Wang, and S. Y. Zhu, A new criterion for zero quantum discord,New J. Phys. 13(6), 063045 (2011)
https://doi.org/10.1088/1367-2630/13/6/063045
37 L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80(2), 517 (2008)
https://doi.org/10.1103/RevModPhys.80.517
38 R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
https://doi.org/10.1103/RevModPhys.81.865
39 K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson, Unified view of quantum and classical correlations, Phys. Rev. Lett. 104(8), 080501 (2010)
https://doi.org/10.1103/PhysRevLett.104.080501
40 C. C. Rulli and M. S. Sarandy, Global quantum discord in multipartite systems, Phys. Rev. A 84(4), 042109 (2011)
https://doi.org/10.1103/PhysRevA.84.042109
41 J. Batle, A. Farouk, O. Tarawneh, and S. Abdalla, Multipartite quantum correlations among atoms in QED cavities, Front. Phys. 13(1), 130305 (2018)
https://doi.org/10.1007/s11467-017-0711-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed