Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 130508   https://doi.org/10.1007/s11467-018-0805-0
  本期目录
Cross and joint ordinal partition transition networks for multivariate time series analysis
Heng Guo, Jia-Yang Zhang, Yong Zou(), Shu-Guang Guan()
Department of Physics, East China Normal University, Shanghai 200062, China
 全文: PDF(12303 KB)  
Abstract

We propose the construction of cross and joint ordinal pattern transition networks from multivariate time series for two coupled systems, where synchronizations are often present. In particular, we focus on phase synchronization, which is a prototypical scenario in dynamical systems. We systematically show that cross and joint ordinal pattern transition networks are sensitive to phase synchronization. Furthermore, we find that some particular missing ordinal patterns play crucial roles in forming the detailed structures in the parameter space, whereas the calculations of permutation entropy measures often do not. We conclude that cross and joint ordinal partition transition network approaches provide complementary insights into the traditional symbolic analysis of synchronization transitions.

Key wordsnonlinear time series analysis    complex networks    ordinal pattern partition    transition network    phase synchronization
收稿日期: 2018-04-16      出版日期: 2018-06-29
Corresponding Author(s): Yong Zou,Shu-Guang Guan   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 130508.
Heng Guo, Jia-Yang Zhang, Yong Zou, Shu-Guang Guan. Cross and joint ordinal partition transition networks for multivariate time series analysis. Front. Phys. , 2018, 13(5): 130508.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0805-0
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/130508
1 R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, and J. Kurths, Recurrence-based time series analysis by means of complex network methods, Int. J. Bifurcat. Chaos 21(04), 1019 (2011)
https://doi.org/10.1142/S0218127411029021
2 R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths, Recurrence networks – A novel paradigm for nonlinear time series analysis, New J. Phys. 12(3), 033025 (2010)
https://doi.org/10.1088/1367-2630/12/3/033025
3 N. Marwan, J. F. Donges, Y. Zou, R. V. Donner, and J. Kurths, Complex network approach for recurrence analysis of time series, Phys. Lett. A 373(46), 4246 (2009)
https://doi.org/10.1016/j.physleta.2009.09.042
4 L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno, From time series to complex networks: The visibility graph, Proc. Natl. Acad. Sci. USA 105(13), 4972 (2008)
https://doi.org/10.1073/pnas.0709247105
5 J. Zhang and M. Small, Complex network from pseudoperiodic time series: Topology versus dynamics, Phys. Rev. Lett. 96(23), 238701 (2006)
https://doi.org/10.1103/PhysRevLett.96.238701
6 Y. Yang and H. Yang, Complex network-based time series analysis, Physica A 387(5–6), 1381 (2008)
https://doi.org/10.1016/j.physa.2007.10.055
7 J. F. Donges, R. V. Donner, M. H. Trauth, N. Marwan, H. J. Schellnhuber, and J. Kurths, Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, Proc. Natl. Acad. Sci. USA 108(51), 20422 (2011)
https://doi.org/10.1073/pnas.1117052108
8 Y. Zou, R. V. Donner, M. Wickramasinghe, I. Z. Kiss, M. Small, and J. Kurths, Phase coherence and attractor geometry of chaotic electrochemical oscillators, Chaos 22(3), 033130 (2012)
https://doi.org/10.1063/1.4747707
9 Z. K. Gao, W. D. Dang, Y. X. Yang, and Q. Cai, Multiplex multivariate recurrence network from multichannel signals for revealing oil-water spatial flow behavior, Chaos 27(3), 035809 (2017)
https://doi.org/10.1063/1.4977950
10 J. B. Elsner, T. H. Jagger, and E. A. Fogarty, Visibility network of united states hurricanes, Geophys. Res. Lett. 36(16), L16702 (2009)
https://doi.org/10.1029/2009GL039129
11 Y. Zou, M. Small, Z. Liu, and J. Kurths, Complex network approach to characterize the statistical features of the sunspot series, New J. Phys. 16(1), 013051 (2014)
https://doi.org/10.1088/1367-2630/16/1/013051
12 Y. Zou, R. Donner, N. Marwan, M. Small, and J. Kurths, Long-term changes in the north-south asymmetry of solar activity: A nonlinear dynamics characterization using visibility graphs, Nonlinear Process. Geophys. 21(6), 1113 (2014)
https://doi.org/10.5194/npg-21-1113-2014
13 R. Zhang, Y. Zou, J. Zhou, Z. K. Gao, and S. Guan, Visibility graph analysis for re-sampled time series from auto-regressive stochastic processes, Commun. Nonlinear Sci. Numer. Simul. 42, 396 (2017)
https://doi.org/10.1016/j.cnsns.2016.04.031
14 Z. Czechowski, M. Lovallo, and L. Telesca, Multifractal analysis of visibility graph-based Ito-related connectivity time series, Chaos 26(2), 023118 (2016)
https://doi.org/10.1063/1.4942582
15 C. Zhang, Y. Chen, and G. Hu, Network reconstructions with partially available data, Front. Phys. 12(3), 128906 (2017)
https://doi.org/10.1007/s11467-017-0664-z
16 Z. Q. Jiang, Y. H. Yang, G. J. Wang, and W. X. Zhou, Joint multifractal analysis based on wavelet leaders, Front. Phys. 12(6), 128907 (2017)
https://doi.org/10.1007/s11467-017-0674-x
17 R. V. Donner, J. Heitzig, J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, The geometry of chaotic dynamics — A complex network perspective, Eur. Phys. J. B 84(4), 653 (2011)
https://doi.org/10.1140/epjb/e2011-10899-1
18 M. McCullough, M. Small, T. Stemler, and H. H. C. Iu, Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems, Chaos 25(5), 053101 (2015)
https://doi.org/10.1063/1.4919075
19 C. W. Kulp, J. M. Chobot, H. R. Freitas, and G. D. Sprechini, Using ordinal partition transition networks to analyze ECG data, Chaos 26(7), 073114 (2016)
https://doi.org/10.1063/1.4959537
20 C. W. Kulp, J. M. Chobot, B. J. Niskala, and C. J. Needhammer, Using forbidden ordinal patterns to detect determinism in irregularly sampled time series, Chaos 26(2), 023107 (2016)
https://doi.org/10.1063/1.4941674
21 M. McCullough, K. Sakellariou, T. Stemler, and M. Small, Counting forbidden patterns in irregularly sampled time series (i): The effects of under-sampling, random depletion, and timing jitter, Chaos 26(12), 123103 (2016)
https://doi.org/10.1063/1.4968551
22 K. Sakellariou, M. McCullough, T. Stemler, and M. Small, Counting forbidden patterns in irregularly sampled time series (ii): Reliability in the presence of highly irregular sampling, Chaos 26(12), 123104 (2016)
https://doi.org/10.1063/1.4970483
23 C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett. 88(17), 174102 (2002)
https://doi.org/10.1103/PhysRevLett.88.174102
24 U. Parlitz, H. Suetani, and S. Luther, Identification of equivalent dynamics using ordinal pattern distributions, Eur. Phys. J. S.T. 222(2), 553 (2013)
https://doi.org/10.1140/epjst/e2013-01859-2
25 J. M. Amigó, K. Keller, and V. A. Unakafova, Ordinal symbolic analysis and its application to biomedical recordings, Phil. Trans. R. Soc. A 373(2034), 20140091 (2014)
https://doi.org/10.1098/rsta.2014.0091
26 F. Takens, Detecting strange attractors in turbulence, in: D. Rand and L.-S. Young (Eds.), Dynamical Systems and Turbulence, Warwick 1980, Vol. 898 of Lecture Notes in Mathematics, Springer, New York, 1981, pp 366–381
https://doi.org/10.1007/BFb0091924
27 H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd Ed., Cambridge: Cambridge University Press, 2004
28 J. M. Amigó, S. Zambrano, and M. A. F. Sanju’an, True and false forbidden patterns in deterministic and random dynamics, Europhys. Lett. 79(5), 50001 (2007)
https://doi.org/10.1209/0295-5075/79/50001
29 J. M. Amigó, S. Zambrano, and M. A. F. Sanju’an, Combinatorial detection of determinism in noisy time series, Europhys. Lett. 83(6), 60005 (2008)
https://doi.org/10.1209/0295-5075/83/60005
30 O. A. Rosso, L. C. Carpi, P. M. Saco, M. G. Ravetti, H. A. Larrondo, and A. Plastino, The Amig’o paradigm of forbidden/missing patterns: A detailed analysis, Eur. Phys. J. B 85(12), 419 (2012)
https://doi.org/10.1140/epjb/e2012-30307-8
31 O. A. Rosso, L. C. Carpi, P. M. Saco, M. Gómez Ravetti, A. Plastino, and H. A. Larrondo, Causality and the entropy-complexity plane: Robustness and missing ordinal patterns, Physica A 391(1–2), 42 (2012)
https://doi.org/10.1016/j.physa.2011.07.030
32 C. W. Kulp and L. Zunino, Discriminating chaotic and stochastic dynamics through the permutation spectrum test, Chaos 24(3), 033116 (2014)
https://doi.org/10.1063/1.4891179
33 A. Politi, Quantifying the dynamical complexity of chaotic time series, Phys. Rev. Lett. 118(14), 144101 (2017)
https://doi.org/10.1103/PhysRevLett.118.144101
34 J. Zhang, J. Zhou, M. Tang, H. Guo, M. Small, and Y. Zou, Constructing ordinal partition transition networks from multivariate time series, Sci. Rep. 7(1), 7795 (2017)
https://doi.org/10.1038/s41598-017-08245-x
35 A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization– A Universal Concept in Nonlinear Sciences, Cambridge University Press, 2001
https://doi.org/10.1017/CBO9780511755743
36 G. V. Osipov, B. Hu, C. Zhou, M. V. Ivanchenko, and J. Kurths, Three types of transitions to phase synchronization in coupled chaotic oscillators, Phys. Rev. Lett. 91(2), 024101 (2003)
https://doi.org/10.1103/PhysRevLett.91.024101
37 J. Zhang, Y. Z. Yu, and X. G. Wang, Synchronization of coupled metronomes on two layers, Front. Phys. 12(6), 120508 (2017)
https://doi.org/10.1007/s11467-017-0675-9
38 H. B. Chen, Y. T. Sun, J. Gao, C. Xu, and Z. G. Zheng, Order parameter analysis of synchronization transitions on star networks, Front. Phys. 12(6), 120504 (2017)
https://doi.org/10.1007/s11467-017-0651-4
39 X. Huang, J. Gao, Y. T. Sun, Z. G. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)
https://doi.org/10.1007/s11467-016-0597-y
40 L. M. Ying, J. Zhou, M. Tang, S. G. Guan, and Y. Zou, Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs, Front. Phys. 13(1), 130201 (2018)
https://doi.org/10.1007/s11467-017-0698-2
41 Z. Zheng and G. Hu, Generalized synchronization versus phase synchronization, Phys. Rev. E 62(6), 7882 (2000)
https://doi.org/10.1103/PhysRevE.62.7882
42 M. C. Romano, M. Thiel, J. Kurths, and W. von Bloh, Multivariate recurrence plots, Phys. Lett. A 330(3–4), 214 (2004)
https://doi.org/10.1016/j.physleta.2004.07.066
43 M. Pecora and T. L. Carroll, Synchronization of chaotic systems, Chaos 25(9), 097611 (2015)
https://doi.org/10.1063/1.4917383
44 S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, The synchronization of chaotic systems,Phys. Rep. 366(1–2), 1 (2002)
https://doi.org/10.1016/S0370-1573(02)00137-0
45 M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett. 78(22), 4193 (1997)
https://doi.org/10.1103/PhysRevLett.78.4193
46 M. G. Rosenblum and A. S. Pikovsky, Detecting direction of coupling in interacting oscillators,Phys. Rev. E 64(4), 045202 (2001)
https://doi.org/10.1103/PhysRevE.64.045202
47 M. C. Romano, M. Thiel, J. Kurths, and C. Grebogi, Estimation of the direction of the coupling by conditional probabilities of recurrence, Phys. Rev. E 76(3), 036211 (2007)
https://doi.org/10.1103/PhysRevE.76.036211
48 J. Nawrath, M. C. Romano, M. Thiel, I. Z. Kiss, M. Wickramasinghe, J. Timmer, J. Kurths, and B. Schelter, Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales, Phys. Rev. Lett. 104(3), 038701 (2010)
https://doi.org/10.1103/PhysRevLett.104.038701
49 Y. Zou, M. C. Romano, M. Thiel, N. Marwan, and J. Kurths, Inferring indirect coupling by means of recurrences,Int. J. Bifurcat. Chaos 21(04), 1099 (2011)
https://doi.org/10.1142/S0218127411029033
50 A. Groth, Visualization of coupling in time series by order recurrence plots, Phys. Rev. E 72(4), 046220 (2005)
https://doi.org/10.1103/PhysRevE.72.046220
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed