Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 138116   https://doi.org/10.1007/s11467-018-0808-9
  本期目录
Molecular-scale processes affecting growth rates of ice at moderate supercooling
Rui Wang1, Li-Mei Xu1(), Feng Wang2()
1. International Center for Quantum Materials and School of Physics, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
2. Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
 全文: PDF(5578 KB)  
Abstract

The growth kinetics of ice are modeled using the Water Potential from Adaptive Force Matching for Ice and Liquid (WAIL) potential with molecular dynamics. The all-atom WAIL model provides a good description of the properties of both ice and liquid with an equilibrium temperature of 270 K at 1 bar. The growth kinetics captured by this model can thus reflect those of real ice. Our simulation indicates that the growth rate of ice on the basal plane is fastest at approximately 20 K supercooling, consistent with experimental findings, where the growth rate increases monotonically as the supercooling increases to 18 K. The key factors that control the growth kinetics leading to the optimal growth temperature are investigated. The simulation revealed a bilayer-by-bilayer growth mechanism on the basal plane that proceeds in two steps. Whereas water molecules lose translational motion and become ice-like quickly, the establishment of orientational order to form ice is a slow and activated process. Enhanced by the templating effect of sublayers, the rapid reduction in translational motion in the formation of the prefreezing layer might explain the significantly faster growth rate relative to the nucleation rate of water. Whereas remelting of the prefreezing layer is observed at low supercooling and may be responsible for the lower growth rate close to the melting temperature, the slow orientational ordering of the prefreezing layer into the final ice conformation is partly responsible for the reduced growth rate at deeper supercooling.

Key wordsice growth    interface water    dynamics of crystallization
收稿日期: 2018-05-15      出版日期: 2018-07-06
Corresponding Author(s): Li-Mei Xu,Feng Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 138116.
Rui Wang, Li-Mei Xu, Feng Wang. Molecular-scale processes affecting growth rates of ice at moderate supercooling. Front. Phys. , 2018, 13(5): 138116.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0808-9
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/138116
1 V. De Michele, G. Romanelli, and A. Cupane, Dynamics of supercooled confined water measured by deep inelastic neutron scattering, Front. Phys. 13(1), 138205 (2018)
https://doi.org/10.1007/s11467-017-0699-1
2 M. De Marzio, G. Camisasca, M. Rovere, and P. Gallo, Fragile to strong crossover and Widom line in supercooled water: A comparative study, Front. Phys. 13(1), 136103 (2018)
https://doi.org/10.1007/s11467-017-0714-6
3 E. O. Rizzatti, M. A. A. Barbosa, and M. C. Barbosa, Core-softened potentials, multiple liquid–liquid critical points, and density anomaly regions: An exact solution, Front. Phys. 13(1), 136102 (2018)
https://doi.org/10.1007/s11467-017-0725-3
4 F. Mallamace, C. Corsaro, D. Mallamace, Z. Wang, and S. H. Chen, The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis, Front. Phys. 10(5), 106103 (2015)
https://doi.org/10.1007/s11467-015-0487-8
5 F. Mallamace, C. Corsaro, D. Mallamace, N. Cicero, S. Vasi, G. Dugo, and H. E. Stanley, Dynamical changes in hydration water accompanying lysozyme thermal denaturation, Front. Phys. 10(5), 106104 (2015)
https://doi.org/10.1007/s11467-015-0486-9
6 F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, N. Cicero, and H. E. Stanley, Water and lysozyme: Some results from the bending and stretching vibrational modes, Front. Phys. 10(5), 106105 (2015)
https://doi.org/10.1007/s11467-015-0488-7
7 I. Piazza, A. Cupane, E. L. Barbier, C. Rome, N. Collomb, J. Ollivier, M. A. Gonzalez, and F. Natali, Dynamical properties of water in living cells, Front. Phys. 13(1), 138301 (2018)
https://doi.org/10.1007/s11467-017-0731-5
8 D. Mallamace, S. Vasi, M. Missori, F. Mallamace, and C. Corsaro, NMR investigation of degradation processes of ancient and modern paper at different hydration levels, Front. Phys. 13(1), 138202 (2018)
https://doi.org/10.1007/s11467-017-0686-6
9 F. Martelli, H. Y. Ko, C. C. Borallo, and G. Franzese, Structural properties of water confined by phospholipid membranes, Front. Phys. 13(1), 136801 (2018)
https://doi.org/10.1007/s11467-017-0704-8
10 C. Corsaro, F. Mallamace, S. Vasi, S. H. Chen, H. E. Stanley, and D. Mallamace, Contrasting microscopic interactions determine the properties of water/methanol solutions, Front. Phys. 13(1), 138201 (2018)
https://doi.org/10.1007/s11467-017-0685-7
11 A. Parmentier, C. Andreani, G. Romanelli, J. J. Shephard, C. G. Salzmann, and R. Senesi, Hydrogen mean force and anharmonicity in polycrystalline and amorphous ice, Front. Phys. 13(1), 136101 (2018)
https://doi.org/10.1007/s11467-017-0724-4
12 H. Shen, M. Chen, Z. Sun, L. Xu, E. Wang, and X. Wu, Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations, Front. Phys. 13(1), 138204 (2018)
https://doi.org/10.1007/s11467-017-0700-z
13 A. Gabrieli, M. Sant, S. Izadi, P. S. Shabane, A. V. Onufriev, and G. B. Suffritti, High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials, Front. Phys. 13(1), 138203 (2018)
https://doi.org/10.1007/s11467-017-0693-7
14 T. Bartels-Rausch, Ten things we need to know about ice and snow, Nature 494(7435), 27 (2013)
https://doi.org/10.1038/494027a
15 J. Liang, M. Liu, R. Wang, and Y. Wang, Study on the glaze ice accretion of wind turbine with various chord lengths, IOP Conf. Ser.: Earth Environ. Sci. 121, 042026 (2018)
16 S. Zhang, J. Huang, Y. Cheng, H. Yang, Z. Chen, and Y. Lai, Bioinspired surfaces with superwettability for antiicing and ice-phobic application: Concept, mechanism, and design, Small 13(48), 1701867 (2017)
https://doi.org/10.1002/smll.201701867
17 J. D. Atkinson, B. J. Murray, M. T. Woodhouse, T. F. Whale, K. J. Baustian, K. S. Carslaw, S. Dobbie, D. O’Sullivan, and T. L. Malkin, The importance of feldspar for ice nucleation by mineral dust in mixedphase clouds, Nature 498(7454), 355 (2013)
https://doi.org/10.1038/nature12278
18 Y. Jin, Z. He, Q. Guo, and J. Wang, Control of ice propagation by using polyelectrolyte multilayer coatings, Angew. Chem. Int. Ed. Engl. 56(38), 11436 (2017)
https://doi.org/10.1002/anie.201705190
19 I. K. Voets, From ice-binding proteins to bio-inspired antifreeze materials, Soft Matter 13(28), 4808 (2017)
https://doi.org/10.1039/C6SM02867E
20 Y. Xu, N. G. Petrik, R. S. Smith, B. D. Kay, and G. A. Kimmel, Homogeneous nucleation of ice in transientlyheated, supercooled liquid water films, J. Phys. Chem. Lett. 8(23), 5736 (2017)
https://doi.org/10.1021/acs.jpclett.7b02685
21 C. A. Knight, A simple technique for growing large, optically “perfect” ice crystals, J. Glaciol. 42(142), 585 (1996)
https://doi.org/10.1017/S0022143000003567
22 A. Shibkov, Y. I. Golovin, M. Zheltov, A. Korolev, and A. Leonov, In situ monitoring of growth of ice from supercooled water by a new electromagnetic method, J. Cryst. Growth 236(1–3), 434 (2002)
https://doi.org/10.1016/S0022-0248(01)02108-X
23 Y. Qiu, N. Odendahl, A. Hudait, R. Mason, A. K. Bertram, F. Paesani, P. J. DeMott, and V. Molinero, Ice nucleation efficiency of hydroxylated organic surfaces is controlled by their structural fluctuations and mismatch to ice, J. Am. Chem. Soc. 139(8), 3052 (2017)
https://doi.org/10.1021/jacs.6b12210
24 M. Matsumoto, S. Saito, and I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing, Nature 416(6879), 409 (2002)
https://doi.org/10.1038/416409a
25 D. Rozmanov and P. G. Kusalik, Temperature dependence of crystal growth of hexagonal ice (Ih), Phys. Chem. Chem. Phys. 13(34), 15501 (2011)
https://doi.org/10.1039/c1cp21210a
26 H. Pruppacher, On the growth of ice crystals in supercooled water and aqueous solution drops,Pure and Applied Geophysics 68(1), 186 (1967)
https://doi.org/10.1007/BF00874894
27 J. Hallett, Experimental studies of the crystallization of supercooled water, J. Atmos. Sci. 21(6), 671 (1964)
https://doi.org/10.1175/1520-0469(1964)021<0671:ESOTCO>2.0.CO;2
28 N. Fukuta, Experimental studies on the growth of small ice crystals, J. Atmos. Sci. 26(3), 522 (1969)
https://doi.org/10.1175/1520-0469(1969)026<0522:ESOTGO>2.0.CO;2
29 D. Rozmanov and P. G. Kusalik, Anisotropy in the crystal growth of hexagonal ice Ih, J. Chem. Phys. 137(9), 094702 (2012)
https://doi.org/10.1063/1.4748377
30 A. A. Shibkov, M. A. Zheltov, A. A. Korolev, A. A. Kazakov, and A. A. Leonov, Crossover from diffusionlimited to kinetics-limited growth of ice crystals, J. Cryst. Growth 285(1–2), 215 (2005)
https://doi.org/10.1016/j.jcrysgro.2005.08.007
31 M. S. Razul and P. G. Kusalik, Crystal growth investigations of icewater interfaces from molecular dynamics simulations: Profile functions and average properties, J. Chem. Phys. 134(1), 014710 (2011)
https://doi.org/10.1063/1.3518984
32 E. R. Pinnick, S. Erramilli, and F. Wang, Predicting the melting temperature of ice-Ih with only electronic structure information as input, J. Chem. Phys. 137(1), 014510 (2012)
https://doi.org/10.1063/1.4731693
33 M. Fitzner, G. C. Sosso, S. J. Cox, and A. Michaelides, The many faces of heterogeneous ice nucleation: Interplay between surface morphology and hydrophobicity, J. Am. Chem. Soc. 137(42), 13658 (2015)
https://doi.org/10.1021/jacs.5b08748
34 E. Sanz, C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. Abascal, and C. Valeriani, Homogeneous ice nucleation at moderate supercooling from molecular simulation, J. Am. Chem. Soc. 135(40), 15008 (2013)
https://doi.org/10.1021/ja4028814
35 J. R. Espinosa, E. Sanz, C. Valeriani, and C. Vega, Homogeneous ice nucleation evaluated for several water models, J. Chem. Phys. 141(18), 18C529 (2014)
36 A. Haji-Akbari and P. G. Debenedetti, Direct calculation of ice homogeneous nucleation rate for a molecular model of water, Proc. Natl. Acad. Sci. USA 112(34), 10582 (2015)
https://doi.org/10.1073/pnas.1509267112
37 G. E. Lindberg and F. Wang, Efficient sampling of ice structures by electrostatic switching,J. Phys. Chem. B 112(20), 6436 (2008)
https://doi.org/10.1021/jp800736t
38 D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, GROMACS: Fast, flexible, and free, J. Comput. Chem. 26(16), 1701 (2005)
https://doi.org/10.1002/jcc.20291
39 T. L. Malkin, B. J. Murray, A. V. Brukhno, J. Anwar, and C. G. Salzmann, Structure of ice crystallized from supercooled water, Proc. Natl. Acad. Sci. USA 109(4), 1041 (2012)
https://doi.org/10.1073/pnas.1113059109
40 K. Morishige and H. Uematsu, The proper structure of cubic ice confined in mesopores, J. Chem. Phys. 122(4), 044711 (2005)
https://doi.org/10.1063/1.1836756
41 J. Benet, L. G. MacDowell, and E. Sanz, A study of the ice-water interface using the TIP4P/2005 water model, Phys. Chem. Chem. Phys. 16(40), 22159 (2014)
https://doi.org/10.1039/C4CP03398A
42 T. L. Malkin, B. J. Murray, C. G. Salzmann, V. Molinero, S. J. Pickering, and T. F. Whale, Stacking disorder in ice I, Phys. Chem. Chem. Phys. 17(1), 60 (2015)
https://doi.org/10.1039/C4CP02893G
43 L. Scott, A primer on ice (in preparation) (2012)
44 S. Choi, E. Jang, and J. S. Kim, In-layer stacking competition during ice growth, J. Chem. Phys. 140(1), 014701 (2014)
https://doi.org/10.1063/1.4852180
45 P. Rein ten Wolde, M. J. Ruiz‐Montero, and D. Frenkel, Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling, J. Chem. Phys. 104(24), 9932 (1996)
https://doi.org/10.1063/1.471721
46 E. B. Moore, E. de la Llave, K. Welke, D. A. Scherlis, and V. Molinero, Freezing, melting and structure of ice in a hydrophilic nanopore, Phys. Chem. Chem. Phys. 12(16), 4124 (2010)
https://doi.org/10.1039/b919724a
47 A. H. Nguyen and V. Molinero, Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: The CHILL+ algorithm, J. Phys. Chem. B 119(29), 9369 (2015)
https://doi.org/10.1021/jp510289t
48 A. Reinhardt, J. P. Doye, E. G. Noya, and C. Vega, Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water, J. Chem. Phys. 137(19), 194504 (2012)
https://doi.org/10.1063/1.4766362
49 H. Tanaka, Simple view of waterlike anomalies of atomic liquids with directional bonding, Phys. Rev. B 66(6), 064202 (2002)
https://doi.org/10.1103/PhysRevB.66.064202
50 C. A. Angell, R. D. Bressel, M. Hemmati, E. J. Sare, and J. C. Tucker, Water and its anomalies in perspective: Tetrahedral liquids with and without liquid–liquid phase transitions, Phys. Chem. Chem. Phys. 2(8), 1559 (2000)
https://doi.org/10.1039/b000206m
51 T. C. Hansen, M. M. Koza, P. Lindner, and W. F. Kuhs, Formation and annealing of cubic ice (II): Kinetic study, J. Phys.: Condens. Matter 20(28), 285105 (2008)
https://doi.org/10.1088/0953-8984/20/28/285105
52 W. F. Kuhs, C. Sippel, A. Falenty, and T. C. Hansen, Extent and relevance of stacking disorder in “ice I(c)”, Proc. Natl. Acad. Sci. USA 109(52), 21259 (2012)
https://doi.org/10.1073/pnas.1210331110
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed