Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2018, Vol. 13 Issue (4): 138113   https://doi.org/10.1007/s11467-018-0809-8
  本期目录
Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber
Mingjun Hu1(), Naibo Zhang2, Guangcun Shan3, Jiefeng Gao4, Jinzhang Liu1, Robert K. Y. Li5()
1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2. Beijing Research and Development Center, the 54th Research Institute, Electronics Technology Group Corporation, Beijing 100070, China
3. School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China
4. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
5. Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
 全文: PDF(39068 KB)  
Abstract

Two-dimensional (2D) materials generally have unusual physical and chemical properties owing to the confined electro-strong interaction in a plane and can exhibit obvious anisotropy and a significant quantum-confinement effect, thus showing great promise in many fields. Some 2D materials, such as graphene and MXenes, have recently exhibited extraordinary electromagnetic-wave shielding and absorbing performance, which is attributed to their special electrical behavior, large specific surface area, and low mass density. Compared with traditional microwave attenuating materials, 2D materials have several obvious inherent advantages. First, similar to other nanomaterials, 2D materials have a very large specific surface area and can provide numerous interfaces for the enhanced interfacial polarization as well as the reflection and scattering of electromagnetic waves. Second, 2D materials have a particular 2D morphology with ultrasmall thickness, which is not only beneficial for the penetration and dissipation of electromagnetic waves through the 2D nanosheets, giving rise to multiple reflections and the dissipation of electromagnetic energy, but is also conducive to the design and fabrication of various well-defined structures, such as layer-by-layer assemblies, core–shell particles, and porous foam, for broadband attenuation of electromagnetic waves. Third, owing to their good processability, 2D materials can be integrated into various multifunctional composites for multimode attenuation of electromagnetic energy. In addition to behaving as microwave reflectors and absorbers, 2D materials can act as impedance regulators and provide structural support for good impedance matching and setup of the optimal structure. Numerous studies indicate that 2D materials are among the most promising microwave attenuation materials. In view of the rapid development and enormous advancement of 2D materials in shielding and absorbing electromagnetic wave, there is a strong need to summarize the recent research results in this field for presenting a comprehensive view and providing helpful suggestions for future development.

Key wordselectromagnetic interference shielding    microwave absorber    graphene    MXenes    polymer nanocomposites
收稿日期: 2018-03-22      出版日期: 2018-07-06
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(4): 138113.
Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys. , 2018, 13(4): 138113.
 链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0809-8
http://academic.hep.com.cn/fop/CN/Y2018/V13/I4/138113
1 M. Ezawa, A topological insulator and helical zero mode in silicene under an inhomogeneous electric field, New J. Phys. 14(3), 033003 (2012)
https://doi.org/10.1088/1367-2630/14/3/033003
2 Q. Liu, X. Zhang, L. B. Abdalla, A. Fazzio, and A. Zunger, Switching a normal insulator into a topological insulator via electric field with application to phosphorene, Nano Lett. 15(2), 1222 (2015)
https://doi.org/10.1021/nl5043769
3 F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Epitaxial growth of two-dimensional stanene, Nat. Mater. 14(10), 1020 (2015)
https://doi.org/10.1038/nmat4384
4 C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X. L. Ma, H. M. Cheng, and W. Ren, Large-area highquality 2D ultrathin Mo2C superconducting crystals, Nat. Mater. 14(11), 1135 (2015)
https://doi.org/10.1038/nmat4374
5 C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
6 B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
7 N. Miao, B. Xu, N. C. Bristowe, J. Zhou, and Z. Sun, Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer,J. Am. Chem. Soc. 139(32), 11125 (2017)
https://doi.org/10.1021/jacs.7b05133
8 N. Miao, B. Xu, L. Zhu, J. Zhou, and Z. Sun, Z. Sun, 2d intrinsic ferromagnets from van der Waals antiferromagnets, J. Am. Chem. Soc. 140(7), 2417 (2018)
https://doi.org/10.1021/jacs.7b12976
9 G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. B. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. N. Xia, Y. L. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, Recent advances in two-dimensional materials beyond graphene, ACS Nano 9(12), 11509 (2015)
https://doi.org/10.1021/acsnano.5b05556
10 D. H. Deng, K. S. Novoselov, Q. Fu, N. F. Zheng, Z. Q. Tian, and X. H. Bao, Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11(3), 218 (2016)
https://doi.org/10.1038/nnano.2015.340
11 C. L. Tan, X. H. Cao, X. J. Wu, Q. Y. He, J. Yang, X. Zhang, J. Z. Chen, W. Zhao, S. K. Han, G. H. Nam, M. Sindoro, and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev. 117(9), 6225 (2017)
https://doi.org/10.1021/acs.chemrev.6b00558
12 H. J. Yin and Z. Y. Tang, Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage, Chem. Soc. Rev. 45(18), 4873 (2016)
https://doi.org/10.1039/C6CS00343E
13 J. S. Li, H. Huang, Y. J. Zhou, C. Y. Zhang, and Z. T. Li, Research progress of graphene-based microwave absorbing materials in the last decade, J. Mater. Res. 32(07), 1213 (2017)
https://doi.org/10.1557/jmr.2017.80
14 H. Lv, Y. Guo, Z. Yang, Y. Cheng, L. P. Wang, B. Zhang, Y. Zhao, Z. J. Xu, and G. Ji, A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials, J. Mater. Chem. C 5(3), 491 (2017)
https://doi.org/10.1039/C6TC03026B
15 S. A. Schelkunoff, Electromagnetic Waves, New York: Van Nostrand, 1943
16 F. Qin and C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys. 111(6), 061301 (2012)
https://doi.org/10.1063/1.3688435
17 Y. Naito and K. Suetake, Application of ferrite to electromagnetic wave absorber and its characteristics, IEEE T. Microw. Theory 19(1), 65 (1971)
https://doi.org/10.1109/TMTT.1971.1127446
18 M. Wu, Y. D. Zhang, S. Hui, T. D. Xiao, S. Ge, W. A. Hines, J. I. Budnick, and G. W. Taylor, Microwave magnetic properties of Co50/(SiO2)50 nanoparticles, Appl. Phys. Lett. 80(23), 4404 (2002)
https://doi.org/10.1063/1.1484248
19 O. Acher and S. Dubourg, Generalization of Snoek’s law to ferromagnetic films and composites, Phys. Rev. B 77(10), 104440 (2008)
https://doi.org/10.1103/PhysRevB.77.104440
20 J. M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Mater. Sci. Eng. Rep. 74(7), 211 (2013)
https://doi.org/10.1016/j.mser.2013.06.001
21 Y. I. Bhattacharjee, I. Arief, and S. Bose, Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives, J. Mater. Chem. C 5(30), 7390 (2017)
https://doi.org/10.1039/C7TC02172K
22 S. Geetha, K. K. Satheesh Kumar, C. R. K. Rao, M. Vijayan, and D. C. Trivedi, EMI shielding: Methods and materials-a review, J. Appl. Polym. Sci. 112(4), 2073 (2009)
https://doi.org/10.1002/app.29812
23 D. Micheli, R. Pastore, C. Apollo, P. B. Morles, M. Marchetti, and G. Gradoni, in: Electromagnetic Characterization of Composite Materials and Microwave Absorbing Modeling, edited by B. Reddy, India: InTech, 2011, p. 359
24 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
25 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials, Nature 442(7100), 282 (2006)
https://doi.org/10.1038/nature04969
26 S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, Electromagnetic interference shielding effectiveness of monolayer graphene, Nanotechnology 23(45), 455704 (2012)
https://doi.org/10.1088/0957-4484/23/45/455704
27 B. Shen, W. Zhai, and W. Zheng, Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding, Adv. Funct. Mater. 24(28), 4542 (2014)
https://doi.org/10.1002/adfm.201400079
28 C. Wang, X. J. Han, P. Xu, X. L. Zhang, Y. C. Du, S. R. Hu, J. Y. Wang, and X. H. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material, Appl. Phys. Lett. 98(7), 072906 (2011)
https://doi.org/10.1063/1.3555436
29 P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y. H. Kim, and C. M. Koo, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness, Carbon 94, 494 (2015)
https://doi.org/10.1016/j.carbon.2015.07.032
30 Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance, Nanoscale 8(37), 16684 (2016)
https://doi.org/10.1039/C6NR02619B
31 X. Bai, Y. H. Zhai, and Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity, J. Phys. Chem. C 115(23), 11673 (2011)
https://doi.org/10.1021/jp202475m
32 Y. J. Chen, G. Xiao, T. S. Wang, Q. Y. Ouyang, L. H. Qi, Y. Ma, P. Gao, C. L. Zhu, M. S. Cao, and H. B. Jin, Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties, J. Phys. Chem. C 115(28), 13603 (2011)
https://doi.org/10.1021/jp202473y
33 K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko, Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption, Sci. Rep. 4(1), 7191 (2015)
https://doi.org/10.1038/srep07191
34 V. K. Singh, A. Shukla, M. K. Patra, L. Saini, R. K. Jani, S. R. Vadera, and N. Kumar, Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite, Carbon 50(6), 2202 (2012)
https://doi.org/10.1016/j.carbon.2012.01.033
35 S. T. Hsiao, C. C. M. Ma, H. W. Tien, W. H. Liao, Y. S. Wang, S. M. Li, C. Y. Yang, S. C. Lin, and R. B. Yang, Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a waterborne polyurethane composite, ACS Appl. Mater. Interfaces 7(4), 2817 (2015)
https://doi.org/10.1021/am508069v
36 B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu, J. Ma, Y. Zhang, D. Li, and G. Xu, Dielectric polarization in electromagnetic wave absorption: Review and perspective, J. Alloys Compd. 728, 1065 (2017)
https://doi.org/10.1016/j.jallcom.2017.09.082
37 X. J. Zhao, W. P. Liu, X. B. Jiang, K. Liu, G. R. Peng, and Z. J. Zhan, Exploring the relationship of dielectric relaxation behavior and discharge efficiency of P(VDFHFP)/PMMA blends by dielectric spectroscopy, Mater. Res. Express 3(7), 075304 (2016)
https://doi.org/10.1088/2053-1591/3/7/075304
38 F. Wu, Y. L. Xia, Y. Wang, and M. Y. Wang, Two-step reduction of self-assembled three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO) nanocomposites for electromagnetic absorption,J. Mater. Chem. A 2(47), 20307 (2014)
https://doi.org/10.1039/C4TA04959D
39 P. B. Liu and Y. Huang, Synthesis of reduced graphene oxide-conducting polymers-Co3O4 composites and their excellent microwave absorption properties, RSC Advances 3(41), 19033 (2013)
https://doi.org/10.1039/c3ra43073a
40 J. N. Ma, W. Liu, B. Quan, X. H. Liang, and G. B. Ji, Incorporation of the polarization point on the graphene aerogel to achieve strong dielectric loss behavior, J. Colloid Interface Sci. 504, 479 (2017)
https://doi.org/10.1016/j.jcis.2017.06.004
41 X. H. Liang, B. Quan, G. B. Ji, W. Liu, H. Q. Zhao, S. S. Dai, J. Lv, and Y. W. Du, Tunable dielectric performance derived from the metal–organic framework/ reduced graphene oxide hybrid with broadband absorption, ACS Sustain. Chem. & Eng. 5(11), 10570 (2017)
https://doi.org/10.1021/acssuschemeng.7b02565
42 X. N. Chen, F. C. Meng, Z. W. Zhou, X. Tian, L. M. Shan, S. B. Zhu, X. L. Xu, M. Jiang, L. Wang, D. Hui, Y. Wang, J. Lu, and J. H. Gou, One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties, Nanoscale 6(14), 8140 (2014)
https://doi.org/10.1039/C4NR01738B
43 W. L. Song, J. Wang, L. Z. Fan, Y. Li, C. Y. Wang, and M. S. Cao, Interfacial engineering of carbon nanofibergraphene- carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks, ACS Appl. Mater. Interfaces 6(13), 10516 (2014)
https://doi.org/10.1021/am502103u
44 T. K. Gupta, B. P. Singh, R. B. Mathur, and S. R. Dhakate, Multi-walled carbon nanotube-graphenepolyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness, Nanoscale 6(2), 842 (2014)
https://doi.org/10.1039/C3NR04565J
45 T. K. Gupta, B. P. Singh, V. N. Singh, S. Teotia, A. P. Singh, I. Elizabeth, S. R. Dhakate, S. K. Dhawan, and R. B. Mathur, MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties, J. Mater. Chem. A 2(12), 4256 (2014)
https://doi.org/10.1039/c3ta14854h
46 X. J. Zhang, G. S. Wang, Y. Z. Wei, L. Guo, and M. S. Cao, Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene- CuS nanocomposites and polyvinylidene fluoride, J. Mater. Chem. A 1(39), 12115 (2013)
https://doi.org/10.1039/c3ta12451g
47 X. J. Zhang, G. S. Wang, W. Q. Cao, Y. Z. Wei, M. S. Cao, and L. Guo, Fabrication of multi-functional PVDF/RGO composites via a simple thermal reduction process and their enhanced electromagnetic wave absorption and dielectric properties, RSC Advances 4(38), 19594 (2014)
https://doi.org/10.1039/C4RA02040E
48 M. K. Han, X. W. Yin, L. Kong, M. Li, W. Y. Duan, L. T. Zhang, and L. F. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties,J. Mater. Chem. A 2(39), 16403 (2014)
https://doi.org/10.1039/C4TA03033H
49 Y. L. Ren, H. Y. Wu, M. M. Lu, Y. J. Chen, C. L. Zhu, P. Gao, M. S. Cao, C. Y. Li, and Q. Y. Ouyang, Quaternary nanocomposites consisting of graphene, Fe3O4@Fe core@shell, and ZnO nanoparticles: Synthesis and excellent electromagnetic absorption properties, ACS Appl. Mater. Interfaces 4(12), 6436 (2012)
https://doi.org/10.1021/am3021697
50 Y. Li and G. Li, Physics of Ferrites, Beijing: Science Press, 1978, p. 335
51 S. T. Zhang and W. Li, Condensed State Magnetic Physics, Beijing: Science Press, 2003, p. 393
52 X. J. Zhang, G. S. Wang, W. Q. Cao, Y. Z. Wei, J. F. Liang, L. Guo, and M. S. Cao, Enhanced microwave absorption property of reduced graphene oxide (RGO)- MnFe2O4 nanocomposites and polyvinylidene fluoride,ACS Appl. Mater. Interfaces 6(10), 7471 (2014)
https://doi.org/10.1021/am500862g
53 Z. T. Zhu, X. Sun, H. R. Xue, H. Guo, X. L. Fan, X. C. Pan, and J. P. He, Graphene-carbonyl iron crosslinked composites with excellent electromagnetic wave absorption properties, J. Mater. Chem. C 2(32), 6582 (2014)
https://doi.org/10.1039/C4TC00757C
54 Y. Qing, D. Min, Y. Zhou, F. Luo, and W. Zhou, Graphene nanosheet- and flake carbonyl iron particlefilled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber, Carbon 86, 98 (2015)
https://doi.org/10.1016/j.carbon.2015.01.002
55 T. T. Chen, F. Deng, J. Zhu, C. F. Chen, G. B. Sun, S. L. Ma, and X. J. Yang, Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties, J. Mater. Chem. 22(30), 15190 (2012)
https://doi.org/10.1039/c2jm31171b
56 X. H. Li, J. Feng, Y. P. Du, J. T. Bai, H. M. Fan, H. L. Zhang, Y. Peng, and F. S. Li, One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber, J. Mater. Chem. A Mater. Energy Sustain. 3(10), 5535 (2015)
https://doi.org/10.1039/C4TA05718J
57 L. N. Wang, X. L. Jia, Y. F. Li, F. Yang, L. Q. Zhang, L. P. Liu, X. Ren, and H. T. Yang, Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles, J. Mater. Chem. A 2(36), 14940 (2014)
https://doi.org/10.1039/C4TA02815E
58 D. P. Sun, Q. Zou, Y. P. Wang, Y. J. Wang, W. Jiang, and F. S. Li, Controllable synthesis of porous Fe3O4@Zno sphere decorated graphene for extraordinary electromagnetic wave absorption, Nanoscale 6(12), 6557 (2014)
https://doi.org/10.1039/C3NR06797A
59 H. Lv, G. Ji, X. Liang, H. Zhang, and Y. Du, A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties, J. Mater. Chem. C 3(19), 5056 (2015)
https://doi.org/10.1039/C5TC00525F
60 L. Wang, Y. Huang, X. Sun, H. J. Huang, P. B. Liu, M. Zong, and Y. Wang, Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures, Nanoscale 6(6), 3157 (2014)
https://doi.org/10.1039/C3NR05313J
61 A. P. Singh, P. Garg, F. Alam, K. Singh, R. B. Mathur, R. P. Tandon, A. Chandra, and S. K. Dhawan, Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, gamma-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band, Carbon 50(10), 3868 (2012)
https://doi.org/10.1016/j.carbon.2012.04.030
62 H. L. Xu, H. Bi, and R. B. Yang, Enhanced microwave absorption property of bowl-like Fe3O4 hollow spheres/reduced graphene oxide composites, J. Appl. Phys. 111, 07A522 (2012)
63 K. Singh, A. Ohlan, V. H. Pham, B. R, S. Varshney, J. Jang, S. H. Hur, W. M. Choi, M. Kumar, S. K. Dhawan, B.S. Kong, and J. S. Chung, Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution, Nanoscale 5(6), 2411 (2013)
https://doi.org/10.1039/c3nr33962a
64 Y. Chen, Y. Li, M. Yip, and N. Tai, Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles, Compos. Sci. Technol. 80, 80 (2013)
https://doi.org/10.1016/j.compscitech.2013.02.024
65 Y. J. Chen, Z. Y. Lei, H. Y. Wu, C. L. Zhu, P. Gao, Q. Y. Ouyang, L. H. Qi, and W. Qin, Electromagnetic absorption properties of graphene/Fe nanocomposites, Mater. Res. Bull. 48(9), 3362 (2013)
https://doi.org/10.1016/j.materresbull.2013.05.020
66 X. C. Zhao, Z. M. Zhang, L. Y. Wang, K. Xi, Q. Q. Cao, D. H. Wang, Y. Yang, and Y. W. Du, Excellent microwave absorption property of graphene-coated Fe nanocomposites, Sci. Rep. 3(1), 3421 (2013)
https://doi.org/10.1038/srep03421
67 G. Z. Wang, Z. Gao, G. P. Wan, S. W. Lin, P. Yang, and Y. Qin, High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers, Nano Res. 7(5), 704 (2014)
https://doi.org/10.1007/s12274-014-0432-0
68 J. Feng, F. Z. Pu, Z. X. Li, X. H. Li, X. Y. Hu, and J. T. Bai, Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber, Carbon 104, 214 (2016)
https://doi.org/10.1016/j.carbon.2016.04.006
69 C. G. Hu, Z. Y. Mou, G. W. Lu, N. Chen, Z. L. Dong, M. J. Hu, and Qu, graphene-Fe3O4 nanocomposites with high-performance microwave absorption, Phys. Chem. Chem. Phys. 15(31), 13038 (2013)
https://doi.org/10.1039/c3cp51253c
70 X. H. Li, H. B. Yi, J. W. Zhang, J. Feng, F. S. Li, D. S. Xue, H. L. Zhang, Y. Peng, and N. J. Mellors, Fe3O4- graphene hybrids: Nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range,J. Nanopart. Res. 15(3), 1472 (2013)
https://doi.org/10.1007/s11051-013-1472-1
71 X. L. Zheng, J. Feng, Y. Zong, H. Miao, X. Y. Hu, J. T. Bai, and X. H. Li, Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers, J. Mater. Chem. C 3(17), 4452 (2015)
https://doi.org/10.1039/C5TC00313J
72 T. S. Wang, Z. H. Liu, M. M. Lu, B. Wen, Q. Y. Ouyang, Y. J. Chen, C. L. Zhu, P. Gao, C. Y. Li, M. S. Cao, and L. H. Qi, Graphene-Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties, J. Appl. Phys. 113(2), 024314 (2013)
https://doi.org/10.1063/1.4774243
73 D. Z. Chen, G. S. Wang, S. He, J. Liu, L. Guo, and M. S. Cao, Controllable fabrication of mono-dispersed RGOhematite nanocomposites and their enhanced wave absorption properties, J. Mater. Chem. A 1(19), 5996 (2013)
https://doi.org/10.1039/c3ta10664k
74 L. Kong, X. W. Yin, Y. J. Zhang, X. Y. Yuan, Q. Li, F. Ye, L. F. Cheng, and L. T. Zhang, Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters, J. Phys. Chem. C 117(38), 19701 (2013)
https://doi.org/10.1021/jp4058498
75 M. Fu, Q. Z. Jiao, Y. Zhao, and H. S. Li, Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials,J. Mater. Chem. A 2(3), 735 (2014)
https://doi.org/10.1039/C3TA14050D
76 M. Zong, Y. Huang, H. W. Wu, Y. Zhao, Q. F. Wang, and X. Sun, One-pot hydrothermal synthesis of rGO/CoFe2O4 composite and its excellent microwave absorption properties, Mater. Lett. 114, 52 (2014)
https://doi.org/10.1016/j.matlet.2013.09.113
77 X. H. Li, J. Feng, H. Zhu, C. H. Qu, J. T. Bai, and X. L. Zheng, Sandwich-like graphene nanosheets decorated with superparamagnetic CoFe2O4 nanocrystals and their application as an enhanced electromagnetic wave absorber, RSC Advances 4(63), 33619 (2014)
https://doi.org/10.1039/C4RA06732K
78 M. Fu, Q. Z. Jiao, and Y. Zhao, Preparation of NiFe2O4 nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties, J. Mater. Chem. A 1(18), 5577 (2013)
https://doi.org/10.1039/c3ta10402h
79 J. Z. He, X. X. Wang, Y. L. Zhang, and M. S. Cao, Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity, J. Mater. Chem. C 4(29), 7130 (2016)
https://doi.org/10.1039/C6TC02020H
80 H. L. Lv, Y. H. Guo, G. L. Wu, G. B. Ji, Y. Zhao, and Z. C. J. Xu, Interface polarization strategy to solve electromagnetic wave interference issue, ACS Appl. Mater. Interfaces 9(6), 5660 (2017)
https://doi.org/10.1021/acsami.6b16223
81 X. B. Li, S. W. Yang, J. Sun, P. He, X. P. Pu, and G. Q. Ding, Enhanced electromagnetic wave absorption performances of Co3O4 nanocube/reduced graphene oxide composite, Synth. Met. 194, 52 (2014)
https://doi.org/10.1016/j.synthmet.2014.04.012
82 M. Verma, A. P. Singh, P. Sambyal, B. P. Singh, S. K. Dhawan, and V. Choudhary, Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding, Phys. Chem. Chem. Phys. 17(3), 1610 (2015)
https://doi.org/10.1039/C4CP04284K
83 B. Qu, C. L. Zhu, C. Y. Li, X. T. Zhang, and Y. J. Chen, Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material, ACS Appl. Mater. Interfaces 8(6), 3730 (2016)
https://doi.org/10.1021/acsami.5b12789
84 A. P. Singh, M. Mishra, A. Chandra, and S. K. Dhawan, Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application, Nanotechnology 22(46), 465701 (2011)
https://doi.org/10.1088/0957-4484/22/46/465701
85 W. L. Song, L. Z. Fan, M. S. Cao, M. M. Lu, C. Y. Wang, J. Wang, T. T. Chen, Y. Li, Z. L. Hou, J. Liu, and Y. P. Sun, Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding, J. Mater. Chem. C 2(25), 5057 (2014)
https://doi.org/10.1039/C4TC00517A
86 W. L. Song, M. S. Cao, M. M. Lu, J. Yang, H. F. Ju, Z. L. Hou, J. Liu, J. Yuan, and L. Z. Fan, Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement, Nanotechnology 24(11), 115708 (2013)
https://doi.org/10.1088/0957-4484/24/11/115708
87 W. L. Song, M. S. Cao, M. M. Lu, S. Bi, C. Y. Wang, J. Liu, J. Yuan, and L. Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding, Carbon 66, 67 (2014)
https://doi.org/10.1016/j.carbon.2013.08.043
88 N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, and J. K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding, Adv. Mater. 26(31), 5480 (2014)
https://doi.org/10.1002/adma.201305293
89 A. P. Singh, M. Mishra, D. P. Hashim, T. N. Narayanan, M. G. Hahm, P. Kumar, J. Dwivedi, G. Kedawat, A. Gupta, B. P. Singh, A. Chandra, R. Vajtai, S. K. Dhawan, P. M. Ajayan, and B. K. Gupta, Probing the engineered sandwich network of vertically aligned carbon nanotube-reduced graphene oxide composites for high performance electromagnetic interference shielding applications, Carbon 85, 79 (2015)
https://doi.org/10.1016/j.carbon.2014.12.065
90 H. L. Lv, Z. H. Yang, P. L. Wang, G. B. Ji, J. Z. Song, L. R. Zheng, H. B. Zeng, and Z. C. J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device, Adv. Mater. 30(15), 1706343 (2018)
https://doi.org/10.1002/adma.201706343
91 J. Feng, Y. Hou, Y. Wang, and L. Li, Synthesis of hierarchical ZnFe2O4@SiO2@rGO core-shell microspheres for enhanced electromagnetic wave absorption, ACS Appl. Mater. Interfaces 9(16), 14103 (2017)
https://doi.org/10.1021/acsami.7b03330
92 Y. F. Pan, G. S. Wang, and Y. H. Yue, Fabrication of Fe3O4@SiO2@rGO nanocomposites and their excellent absorption properties with low filler content, RSC Advances 5(88), 71718 (2015)
https://doi.org/10.1039/C5RA13315G
93 S. Li, Y. Huang, X. Ding, N. Zhang, M. Zong, M. Wang, and J. Liu, Synthesis of core-shell FeCo@SiO2 particles coated with the reduced graphene oxide as an efficient broadband electromagnetic wave absorber, J. Mater. Sci.: Mater. Electron. 28(21), 15782 (2017)
https://doi.org/10.1007/s10854-017-7472-7
94 X. Liu, L. S. Wang, Y. Ma, Y. Qiu, Q. Xie, Y. Chen, and D. L. Peng, Facile synthesis and microwave absorption properties of yolk-shell ZnO-Ni-C/RGO composite materials, Chem. Eng. J. 333, 92 (2018)
https://doi.org/10.1016/j.cej.2017.09.139
95 D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, and Z. M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding, Adv. Funct. Mater. 25(4), 559 (2015)
https://doi.org/10.1002/adfm.201403809
96 X. Jian, B. Wu, Y. Wei, S. X. Dou, X. Wang, W. He, and N. Mahmood, Facile synthesis of Fe3O4/GCS composites and their enhanced microwave absorption properties, ACS Appl. Mater. Interfaces 8(9), 6101 (2016)
https://doi.org/10.1021/acsami.6b00388
97 Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, K. Li, K. Xie, X. Li, Q. Fu, L. Cheng, L. Zhang, and B. Wei, Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding, Adv. Mater. 29(31), 1701583 (2017)
https://doi.org/10.1002/adma.201701583
98 L. Wang, Y. Huang, C. Li, J. J. Chen, and X. Sun, Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: Synthesis and microwave absorption performance, Phys. Chem. Chem. Phys. 17(8), 5878 (2015)
https://doi.org/10.1039/C4CP05556J
99 X. M. Bian, L. Liu, H. B. Li, C. Y. Wang, Q. Xie, Q. L. Zhao, S. Bi, and Z. L. Hou, Construction of threedimensional graphene interfaces into carbon fiber textiles for increasing deposition of nickel nanoparticles: Flexible hierarchical magnetic textile composites for strong electromagnetic shielding, Nanotechnology 28(4), 045710 (2017)
https://doi.org/10.1088/1361-6528/28/4/045710
100 Y. Wang, Y. Fu, X. Wu, W. Zhang, Q. Wang, and J. Li, Synthesis of hierarchical core-shell NiFe2O4@MnO2 composite microspheres decorated graphene nanosheet for enhanced microwave absorption performance, Ceram. Int. 43(14), 11367 (2017)
https://doi.org/10.1016/j.ceramint.2017.05.344
101 X. Zhang, Y. Huang, X. Chen, C. Li, and J. Chen, Hierarchical structures of graphene@CoFe2O4@SiO2@TiO2 nanosheets: Synthesis and excellent microwave absorption properties, Mater. Lett. 158, 380 (2015)
https://doi.org/10.1016/j.matlet.2015.05.124
102 H. L. Yu, T. S. Wang, B. Wen, M. M. Lu, Z. Xu, C. L. Zhu, Y. J. Chen, X. Y. Xue, C. W. Sun, and M. S. Cao, Graphene/polyaniline nanorod arrays: Synthesis and excellent electromagnetic absorption properties, J. Mater. Chem. 22(40), 21679 (2012)
https://doi.org/10.1039/c2jm34273a
103 Y. L. Ren, C. L. Zhu, S. Zhang, C. Y. Li, Y. J. Chen, P. Gao, P. P. Yang, and Q. Y. Ouyang, Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: Synthesis and electromagnetic absorption properties, Nanoscale 5(24), 12296 (2013)
https://doi.org/10.1039/c3nr04058e
104 B. Shen, Y. Li, W. Zhai, and W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding, ACS Appl. Mater. Interfaces 8(12), 8050 (2016)
https://doi.org/10.1021/acsami.5b11715
105 V. Eswaraiah, V. Sankaranarayanan, and S. Ramaprabhu, Functionalized graphene-PVDF foam composites for EMI shielding, Macromol. Mater. Eng. 296(10), 894 (2011)
https://doi.org/10.1002/mame.201100035
106 H. B. Zhang, Q. Yan, W. G. Zheng, Z. He, and Z. Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding, ACS Appl. Mater. Interfaces 3(3), 918 (2011)
https://doi.org/10.1021/am200021v
107 D. X. Yan, P. G. Ren, H. Pang, Q. Fu, M. B. Yang, and Z. M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite, J. Mater. Chem. 22(36), 18772 (2012)
https://doi.org/10.1039/c2jm32692b
108 H. Zhang, A. J. Xie, C. P. Wang, H. S. Wang, Y. H. Shen, and X. Y. Tian, Novel RGO/alpha-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption, J. Mater. Chem. A 1(30), 8547 (2013)
https://doi.org/10.1039/c3ta11278k
109 W. L. Song, X. T. Guan, L. Z. Fan, W. Q. Cao, C. Y. Wang, and M. S. Cao, Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding, Carbon 93, 151 (2015)
https://doi.org/10.1016/j.carbon.2015.05.033
110 F. Wu, A. M. Xie, M. X. Sun, Y. Wang, and M. Y. Wang, Reduced graphene oxide (rGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption, J. Mater. Chem. A 3(27), 14358 (2015)
https://doi.org/10.1039/C5TA01577D
111 Y. Zhang, Y. Huang, T. F. Zhang, H. C. Chang, P. S. Xiao, H. H. Chen, Z. Y. Huang, and Y. S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam, Adv. Mater. 27(12), 2049 (2015)
https://doi.org/10.1002/adma.201405788
112 B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, and W. Zheng, Microcellular graphene foam for improved broadband electromagnetic interference shielding, Carbon 102, 154 (2016)
https://doi.org/10.1016/j.carbon.2016.02.040
113 B. Shen, W. Zhai, M. Tao, J. Ling, and W. Zheng, Lightweight, multifunctional polyetherimide/ graphene@Fe3O4 composite foams for shielding of electromagnetic pollution, ACS Appl. Mater. Interfaces 5(21), 11383 (2013)
https://doi.org/10.1021/am4036527
114 Y. Zhang, Y. Huang, H. H. Chen, Z. Y. Huang, Y. Yang, P. S. Xiao, Y. Zhou, and Y. S. Chen, Composition and structure control of ultralight graphene foam for highperformance microwave absorption, Carbon 105, 438 (2016)
https://doi.org/10.1016/j.carbon.2016.04.070
115 Z. Chen, C. Xu, C. Ma, W. Ren, and H. M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding, Adv. Mater. 25(9), 1296 (2013)
https://doi.org/10.1002/adma.201204196
116 J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. G. Zheng, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding, ACS Appl. Mater. Interfaces 5(7), 2677 (2013)
https://doi.org/10.1021/am303289m
117 J. He, P. Lyu, and P. Nachtigall, New two-dimensional Mn-based MXenes with room temperature ferromagnetism and half-metallicity, J. Mater. Chem. C 4(47), 11143 (2016)
https://doi.org/10.1039/C6TC03917K
118 F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo, and Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science 353(6304), 1137 (2016)
https://doi.org/10.1126/science.aag2421
119 M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, and L. Cheng, Ti3C2 mxenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band, ACS Appl. Mater. Interfaces 8(32), 21011 (2016)
https://doi.org/10.1021/acsami.6b06455
120 Y. Qing, W. Zhou, F. Luo, and D. Zhu, Titanium carbide (mxene) nanosheets as promising microwave absorbers, Ceram. Int. 42(14), 16412 (2016)
https://doi.org/10.1016/j.ceramint.2016.07.150
121 W. L. Feng, H. Luo, Y. Wang, S. F. Zeng, L. W. Deng, X. S. Zhou, H. B. Zhang, and S. M. Peng, Ti3C2 mxene: A promising microwave absorbing material, RSC Advances 8(5), 2398 (2018)
https://doi.org/10.1039/C7RA12616F
122 J. Liu, H. B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, and Z. Z. Yu, Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagneticinterference shielding, Adv. Mater. 29(38), 1702367 (2017)
https://doi.org/10.1002/adma.201702367
123 R. H. Sun, H. B. Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, and Z. Z. Yu, Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding, Adv. Funct. Mater. 27(45), 1702807 (2017)
https://doi.org/10.1002/adfm.201702807
124 X. L. Li, X. W. Yin, M. K. Han, C. Q. Song, H. L. Xu, Z. X. Hou, L. T. Zhang, and L. F. Cheng, Ti3C2 mxenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties, J. Mater. Chem. C 5(16), 4068 (2017)
https://doi.org/10.1039/C6TC05226F
125 Y. B. Li, X. Zhou, J. Wang, Q. H. Deng, M. A. Li, S. Y. Du, Y. H. Han, J. Lee, and Q. Huang, Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance, RSC Advances 7(40), 24698 (2017)
https://doi.org/10.1039/C7RA03402D
126 Y. Qian, H. W. Wei, J. D. Dong, Y. Z. Du, X. J. Fang, W. H. Zheng, Y. T. Sun, and Z. X. Jiang, Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption,Ceram. Int. 43(14), 10757 (2017)
https://doi.org/10.1016/j.ceramint.2017.05.082
127 Y. Qing, H. Nan, F. Luo, and W. Zhou, Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers, RSC Advances 7(44), 27755 (2017)
https://doi.org/10.1039/C7RA02417G
128 H. B. Yang, J. J. Dai, X. Liu, Y. Lin, J. J. Wang, L. Wang, and F. Wang, Layered PVB/Ba3Co2Fe24O41/Ti3C2 mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range, Mater. Chem. Phys. 200, 179 (2017)
https://doi.org/10.1016/j.matchemphys.2017.05.057
129 M. K. Han, X. W. Yin, X. L. Li, B. Anasori, L. T. Zhang, L. F. Cheng, and Y. Gogotsi, Laminated and two-dimensional carbon-supported microwave absorbers derived from mxenes, ACS Appl. Mater. Interfaces 9(23), 20038 (2017)
https://doi.org/10.1021/acsami.7b04602
130 X. Li, X. Yin, M. Han, C. Song, X. Sun, H. Xu, L. Cheng, and L. Zhang, A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx mxene, J. Mater. Chem. C 5(30), 7621 (2017)
https://doi.org/10.1039/C7TC01991B
131 X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, and G. Ji, A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance, J. Mater. Chem. C 4(28), 6816 (2016)
https://doi.org/10.1039/C6TC02006B
132 X. J. Zhang, S. Li, S. W. Wang, Z. J. Yin, J. Q. Zhu, A. P. Guo, G. S. Wang, P. G. Yin, and L. Guo, Selfsupported construction of three-dimensional MoS2 hierarchical nanospheres with tunable high-performance microwave absorption in broadband, J. Phys. Chem. C 120(38), 22019 (2016)
https://doi.org/10.1021/acs.jpcc.6b06661
133 B. Quan, X. Liang, G. Xu, Y. Cheng, Y. Zhang, W. Liu, G. Ji, and Y. Du, A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation, New J. Chem. 41(3), 1259 (2017)
https://doi.org/10.1039/C6NJ03052A
134 L. Bai, Y. Wang, F. Li, D. An, Z. Zhang, and Y. Liu, Enhanced electromagnetic wave absorption properties of MoS2-graphene hybrid nanosheets prepared by a hydrothermal method, J. Sol-Gel Sci. Technol. 84(1), 104 (2017)
https://doi.org/10.1007/s10971-017-4478-9
135 A. Xie, M. Sun, K. Zhang, W. Jiang, F. Wu, and M. He, In situ growth of MoS2 nanosheets on reduced graphene oxide (rGO) surfaces: Interfacial enhancement of absorbing performance against electromagnetic pollution, Phys. Chem. Chem. Phys. 18(36), 24931 (2016)
https://doi.org/10.1039/C6CP04600B
136 Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, and M. He, Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber, ACS Appl. Mater. Interfaces 7(47), 26226 (2015)
https://doi.org/10.1021/acsami.5b08410
137 X. Wang, W. Zhang, X. Ji, B. Zhang, M. Yu, W. Zhang, and J. Liu, 2D MoS2/graphene composites with excellent full Ku band microwave absorption, RSC Advances 6(108), 106187 (2016)
https://doi.org/10.1039/C6RA22817H
138 X. Ding, Y. Huang, S. Li, N. Zhang, and J. Wang, 3D architecture reduced graphene oxide-MoS2 composite: Preparation and excellent electromagnetic wave absorption performance, Compos. Part A: Appl. Sci. Manuf. 90, 424 (2016)
https://doi.org/10.1016/j.compositesa.2016.08.006
139 Y. Sun, W. Zhong, Y. Wang, X. Xu, T. Wang, L. Wu, and Y. Du, MoS2-based mixed-dimensional van der waals heterostructures: A new platform for excellent and controllable microwave-absorption performance, ACS Appl. Mater. Interfaces 9(39), 34243 (2017)
https://doi.org/10.1021/acsami.7b10114
140 X. J. Zhang, S. W. Wang, G. S. Wang, Z. Li, A. P. Guo, J. Q. Zhu, D. P. Liu, and P. G. Yin, Facile synthesis of NiS2@MoS2 core-shell nanospheres for effective enhancement in microwave absorption, RSC Advances 7(36), 22454 (2017)
https://doi.org/10.1039/C7RA03260A
141 W. L. Zhang, D. Jiang, X. Wang, B. N. Hao, Y. D. Liu, and J. Liu, Growth of polyaniline nanoneedles on MoS2 nanosheets, tunable electroresponse, and electromagnetic wave attenuation analysis, J. Phys. Chem. C 121(9), 4989 (2017)
https://doi.org/10.1021/acs.jpcc.6b11656
142 X. Ding, Y. Huang, S. Li, N. Zhang, and J. Wang, FeNi3 nanoalloy decorated on 3d architecture composite of reduced graphene oxide/molybdenum disulfide giving excellent electromagnetic wave absorption properties, J. Alloys Compd. 689, 208 (2016)
https://doi.org/10.1016/j.jallcom.2016.07.312
143 A. P. Guo, X. J. Zhang, S. W. Wang, J. Q. Zhu, L. Yang, and G. S. Wang, Excellent microwave absorption and electromagnetic interference shielding based on reduced graphene oxide@MoS2/poly(vinylidene fluoride) composites, ChemPlusChem 81(12), 1305 (2016)
https://doi.org/10.1002/cplu.201600370
144 M. Li, X. Cao, S. Zheng, and S. Qi, Ternary composites RGO/MoS2@Fe3O4: Synthesis and enhanced electromagnetic wave absorbing performance, J. Mater. Sci.: Mater. Electron. 28(22), 16802 (2017)
https://doi.org/10.1007/s10854-017-7595-x
145 M. Osada and T. Sasaki, Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks, Adv. Mater. 24(2), 210 (2012)
https://doi.org/10.1002/adma.201103241
146 R. Z. Ma and T. Sasaki, Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality, Acc. Chem. Res. 48(1), 136 (2015)
https://doi.org/10.1021/ar500311w
147 M. P. Gashti and S. Eslami, Structural, optical and electromagnetic properties of aluminum-clay nanocomposites, Superlattices Microstruct. 51(1), 135 (2012)
https://doi.org/10.1016/j.spmi.2011.11.008
148 E. Y. Salih, Z. Abbas, S. H. H. Al Ali, and M. Z. Hussein, Dielectric behaviour of Zn/Al-NO3 LDHs filled with polyvinyl chloride composite at low microwave frequencies, Adv. Mater. Sci. Eng. 2014, 1 (2014)
https://doi.org/10.1155/2014/647120
149 F. Z. Lv, Y. Y. Wu, Y. H. Zhang, J. W. Shang, and P. K. Chu, Structure and magnetic properties of soft organic ZnAl-LDH/polyimide electromagnetic shielding composites, J. Mater. Sci. 47(4), 2033 (2012)
https://doi.org/10.1007/s10853-011-6003-9
150 M. Parvinzadeh, and S. Eslami, Optical and electromagnetic characteristics of clay-iron oxide nanocomposites, Res. Chem. Intermed. 37(7), 771 (2011)
https://doi.org/10.1007/s11164-011-0310-2
151 B. Quan, X. H. Liang, G. B. Ji, J. Lv, S. S. Dai, G. Y. Xu, and Y. W. Du, Laminated graphene oxidesupported high-efficiency microwave absorber fabricated by an in-situ growth approach, Carbon 129, 310 (2018)
https://doi.org/10.1016/j.carbon.2017.12.026
152 H. Lv, H. Zhang, and G. Ji, Development of novel graphene/g-C3N4 composite with broad-frequency and light-weight features, Part. Part. Syst. Charact. 33(9), 656 (2016)
https://doi.org/10.1002/ppsc.201600065
153 A. Murk and I. Zivkovic, Boron nitride loading for thermal conductivity improvement of composite microwave absorbers, Electron. Lett. 48(18), 1130 (2012)
https://doi.org/10.1049/el.2012.0930
154 Y. Kang, Z. Jiang, T. Ma, Z. Chu, and G. Li, Hybrids of reduced graphene oxide and hexagonal boron nitride: Lightweight absorbers with tunable and highly efficient microwave attenuation properties, ACS Appl. Mater. Interfaces 8(47), 32468 (2016)
https://doi.org/10.1021/acsami.6b11843
155 X. Zhang, X. Zhang, M. Yang, S. Yang, H. Wu, S. Guo, and Y. Wang, Ordered multilayer film of (graphene oxide/polymer and boron nitride/polymer) nanocomposites: An ideal EMI shielding material with excellent electrical insulation and high thermal conductivity, Compos. Sci. Technol. 136, 104 (2016)
https://doi.org/10.1016/j.compscitech.2016.10.008
156 F. Wu, A. Xie, M. X. Sun, W. C. Jiang, and K. Zhang, Few-layer black phosphorus: A bright future in electromagnetic absorption, Mater. Lett. 193, 30 (2017)
https://doi.org/10.1016/j.matlet.2017.01.052
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed