Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 137107   https://doi.org/10.1007/s11467-018-0818-7
  本期目录
Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation
Da Li (李达), Yan Liu (刘妍), Fu-Bo Tian (田夫波), Shu-Li Wei (魏书丽), Zhao Liu (刘召), De-Fang Duan (段德芳), Bing-Bing Liu (刘冰冰), Tian Cui (崔田)()
State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
 全文: PDF(15109 KB)  
Abstract

In general, heavy elements contribute only to acoustic phonon modes, which are less important for the superconductivity of hydrides. However, it was revealed that the heavier elements could enhance the phonon-mediated superconductivity in ternary hydrides. In the H3S–Xe system, a novel H3SXe compound was discovered by first-principle calculations. The structural phase transitions of H3SXe under high pressures were studied. The R-3m phase of H3SXe was predicted to appear at pressures above 80 GPa, which transitions to C2/m, P-3m1, and Pm-3m phases at pressures of 90, 160, and 220 GPa, respectively. It has been anticipated that the Pm-3m-H3SXe phase with a similar structural feature as that of Im-3m-H3S is a potential high-temperature superconductor with a Tc of 89 K at 240 GPa. The Tc value of H3SXe is lower than that of H3S at high pressure. The “H3S” host lattice of Pm- 3m-H3SXe is a crucial factor influencing the Tc value. The Xe atoms could accelerate the hydrogen-bond symmetrization. With the increase of the atomic number, the Tc value linearly increases in the H3S–noble-gas-element system. This indicates that the superconductivity can be modulated by changing the relative atomic mass of the noble-gas element.

Key wordsternary hydrides    noble gas elements    chemical precompression    hydrogen-bond symmetrization
收稿日期: 2018-03-10      出版日期: 2018-08-06
Corresponding Author(s): Tian Cui (崔田)   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 137107.
Da Li (李达), Yan Liu (刘妍), Fu-Bo Tian (田夫波), Shu-Li Wei (魏书丽), Zhao Liu (刘召), De-Fang Duan (段德芳), Bing-Bing Liu (刘冰冰), Tian Cui (崔田). Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation. Front. Phys. , 2018, 13(5): 137107.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0818-7
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/137107
1 I. I. Mazin, Superconductivity: Extraordinarily conventional, Nature 525(7567), 40 (2015)
https://doi.org/10.1038/nature15203
2 I. BožovićA conventional conundrum, Nat. Phys. 12(1), 22 (2016)
3 A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525(7567), 73 (2015)
https://doi.org/10.1038/nature14964
4 M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, Crystal structure of the superconducting phase of sulfur hydride, Nat. Phys. 12(9), 835 (2016)
5 D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H2S)2H2 with high-Tcsuperconductivity, Sci. Rep. 4(1), 6968 (2015)
https://doi.org/10.1038/srep06968
6 L. Ortenzi, E. Cappelluti, and L. Pietronero, Band structure and electron-phonon coupling in H3S: A tightbinding model, Phys. Rev. B 94(6), 064507 (2016)
https://doi.org/10.1103/PhysRevB.94.064507
7 D. A. Papaconstantopoulos, B. M. Klein, M. J. Mehl, and W. E. Pickett, Cubic H3S around 200 GPa: An atomic hydrogen superconductor stabilized by sulfur, Phys. Rev. B 91(18), 184511 (2015)
https://doi.org/10.1103/PhysRevB.91.184511
8 N. Bernstein, C. S. Hellberg, M. D. Johannes, I. I. Mazin, and M. J. Mehl, What superconducts in sulfur hydrides under pressure and why, Phys. Rev. B 91(6), 060511 (2015)
https://doi.org/10.1103/PhysRevB.91.060511
9 A. Bianconi and T. Jarlborg, Superconductivity above the lowest Earth temperature in pressurized sulfur hydride, EPL 112(3), 37001 (2015)
https://doi.org/10.1209/0295-5075/112/37001
10 Y. Quan and W. E. Pickett, Van Hove singularities and spectral smearing in high-temperature superconducting H3S, Phys. Rev. B 93(10), 104526 (2016)
https://doi.org/10.1103/PhysRevB.93.104526
11 A. F. Goncharov, S. S. Lobanov, I. Kruglov, X. M. Zhao, X. J. Chen, A. R. Oganov, Z. Konôpková, and V. B. Prakapenka, Hydrogen sulfide at high pressure: Change in stoichiometry, Phys. Rev. B 93(17), 174105 (2016)
https://doi.org/10.1103/PhysRevB.93.174105
12 Y. Yuan, Y. Feng, L. Bian, D.B. Zhang, and X.Z. Li, The quantum nature of the superconducting hydrogen sulfide at finite temperatures, arXiv: 1607.02348 [condmat] (2016)
13 A. P. Durajski, Quantitative analysis of nonadiabatic effects in dense H3S and PH3 superconductors, Sci. Rep. 6(1), 38570 (2016)
https://doi.org/10.1038/srep38570
14 H. Wang, X. Li, G. Gao, Y. Li, and Y. Ma, Hydrogenrich superconductors at high pressures, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8(1), e1330 (2018)
https://doi.org/10.1002/wcms.1330
15 Y. Yao and S. Tse John, Superconducting hydrogen sulfide, Chemistry 24(8), 1769 (2017)
https://doi.org/10.1002/chem.201705321
16 R. Szczesniak and A. P. Durajski, The isotope effect in H3S superconductor, Solid State Commun. 249, 30 (2017)
https://doi.org/10.1016/j.ssc.2016.10.012
17 A. P. Durajski and R. Szcze¸śniak, First-principles study of superconducting hydrogen sulfide at pressure up to 500 GPa, Sci. Rep. 7(1), 4473 (2017)
https://doi.org/10.1038/s41598-017-04714-5
18 S. Azadi and T. D. Kühne, High-pressure hydrogen sulfide by diffusion quantum Monte Carlo, J. Chem. Phys. 146(8), 084503 (2017)
https://doi.org/10.1063/1.4976836
19 R. Akashi, M. Kawamura, S. Tsuneyuki, Y. Nomura, and R. Arita, First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides,Phys. Rev. B 91(22), 224513 (2015)
https://doi.org/10.1103/PhysRevB.91.224513
20 I. Errea, M. Calandra, C. J. Pickard, J. Nelson, R. J. Needs, Y. Li, H. Liu, Y. Zhang, Y. Ma, and F. Mauri, High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor,Phys. Rev. Lett. 114(15), 157004 (2015)
https://doi.org/10.1103/PhysRevLett.114.157004
21 C. Heil and L. Boeri, Influence of bonding on superconductivity in high-pressure hydrides, Phys. Rev. B 92(6), 060508 (2015)
https://doi.org/10.1103/PhysRevB.92.060508
22 Y. Ge, F. Zhang, and Y. Yao, First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution, Phys. Rev. B 93(22), 224513 (2016)
https://doi.org/10.1103/PhysRevB.93.224513
23 M. Komelj and H. Krakauer, Electron-phonon coupling and exchange-correlation effects in superconducting H 3 S under high pressure, Phys. Rev. B 92(20), 205125 (2015)
https://doi.org/10.1103/PhysRevB.92.205125
24 E. J. Nicol and J. P. Carbotte, Comparison of pressurized sulfur hydride with conventional superconductors, Phys. Rev. B 91(22), 220507 (2015)
https://doi.org/10.1103/PhysRevB.91.220507
25 A. F. Goncharov, S. S. Lobanov, V. B. Prakapenka, and E. Greenberg, Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur, Phys. Rev. B 95(14), 140101 (2017)
https://doi.org/10.1103/PhysRevB.95.140101
26 B. Guigue, A. Marizy, and P. Loubeyre, Direct synthesis of pure H3S from S and H elements: No evidence of the cubic superconducting phase up to 160 GPa, Phys. Rev. B 95(2), 020104 (2017)
https://doi.org/10.1103/PhysRevB.95.020104
27 H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, Superconductive sodalite-like clathrate calcium hydride at high pressures, Proc. Natl. Acad. Sci. USA 109(17), 6463 (2012)
https://doi.org/10.1073/pnas.1118168109
28 Y. Li, L. Wang, H. Liu, Y. Zhang, J. Hao, C. J. Pickard, J. R. Nelson, R. J. Needs, W. Li, Y. Huang, I. Errea, M. Calandra, F. Mauri, and Y. Ma, Dissociation products and structures of solid H2S at strong compression, Phys. Rev. B 93(2), 020103 (2016)
https://doi.org/10.1103/PhysRevB.93.020103
29 T. Ishikawa, A. Nakanishi, K. Shimizu, H. Katayama-Yoshida, T. Oda, and N. Suzuki, Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure, Sci. Rep. 6(1), 23160 (2016)
https://doi.org/10.1038/srep23160
30 A. P. Drozdov, M. I. Eremets, and I. A. Troyan, Superconductivity above 100 K in PH3 at high pressures, arXiv: 1508.06224 [cond-mat] (2015)
31 H. Oh, S. Coh, and M. L. Cohen, Comparative study of high-Tcsuperconductivity in H3S and H3P, arXiv: 1606.09477 [cond-mat] (2016)
32 A. Shamp, T. Terpstra, T. Bi, Z. Falls, P. Avery, and E. Zurek, Decomposition Products of Phosphine Under Pressure: PH2 Stable and Superconducting? J. Am. Chem. Soc. 138(6), 1884 (2016)
https://doi.org/10.1021/jacs.5b10180
33 S. Zhang, Y. Wang, J. Zhang, H. Liu, X. Zhong, H. F. Song, G. Yang, L. Zhang, and Y. Ma, Phase Diagram and high-temperature superconductivity of compressed selenium hydrides, Sci. Rep. 5(1), 15433 (2015)
https://doi.org/10.1038/srep15433
34 X. Zhong, H. Wang, J. Zhang, H. Liu, S. Zhang, H. F. Song, G. Yang, L. Zhang, and Y. Ma, Tellurium hydrides at high pressures: High-temperature superconductors, Phys. Rev. Lett. 116(5), 057002 (2016)
https://doi.org/10.1103/PhysRevLett.116.057002
35 K. Abe and N. W. Ashcroft, Stabilization and highly metallic properties of heavy group-V hydrides at high pressures, Phys. Rev. B 92(22), 224109 (2015)
https://doi.org/10.1103/PhysRevB.92.224109
36 Y. Fu, et al., Chem. Mater. (2016)
37 Y. Ma, et al., The unexpected binding and superconductivity in SbH4 at high pressure, arXiv: 1506.03889 [cond-mat] (2015)
38 Y. Wang, H. Wang, J. S. Tse, T. Iitaka, and Y. Ma, Structural morphologies of high-pressure polymorphs of strontium hydrides, Phys. Chem. Chem. Phys. 17, 19379 (2015)
https://doi.org/10.1039/C5CP01510C
39 Y. Li, J. Hao, H. Liu, J. S. Tse, Y. Wang, and Y. Ma, Pressure-stabilized superconductive yttrium hydrides, Sci. Rep. 5(1), 9948 (2015)
https://doi.org/10.1038/srep09948
40 M. M. D. Esfahani, Z. Wang, A. R. Oganov, H. Dong, Q. Zhu, S. Wang, M. S. Rakitin, and X. F. Zhou, Superconductivity of novel tin hydrides (SnnHm) under pressure, Sci. Rep. 6(1), 22873 (2016)
https://doi.org/10.1038/srep22873
41 H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Potential high-Tc superconductinglanthanum and yttrium hydrides at high pressure, Proc. Natl. Acad. Sci. USA 114, 6990 (2017)
https://doi.org/10.1073/pnas.1704505114
42 I. A. Kruglov, et al., Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity, arXiv: 1708.05251 [cond-mat] (2017)
43 M. Rahm, R. Hoffmann, and N. W. Ashcroft, Ternary gold hydrides: Routes to stable and potentially superconducting compounds, J. Am. Chem. Soc. 139(25), 8740 (2017)
https://doi.org/10.1021/jacs.7b04456
44 S. Zhang, L. Zhu, H. Liu, and G. Yang, Structure and electronic properties of Fe2SH3 compound under high pressure, Inorg. Chem. 55(21), 11434 (2016)
https://doi.org/10.1021/acs.inorgchem.6b01949
45 T. Muramatsu, W. K. Wanene, M. Somayazulu, E. Vinitsky, D. Chandra, T. A. Strobel, V. V. Struzhkin, and R. J. Hemley, Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9, J. Phys. Chem. C 119(32), 18007 (2015)
https://doi.org/10.1021/acs.jpcc.5b03709
46 Y. Ma, D. Duan, Z. Shao, H. Yu, H. Liu, F. Tian, X. Huang, D. Li, B. Liu, and T. Cui, Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure, Phys. Rev. B 96(14), 144518 (2017)
https://doi.org/10.1103/PhysRevB.96.144518
47 Y. Ma, D. Duan, Z. Shao, D. Li, L. Wang, H. Yu, F. Tian, H. Xie, B. Liu, and T. Cui, Prediction of superconducting ternary hydride MgGeH6: From divergent highpressure formation routes, Phys. Chem. Chem. Phys. 19(40), 27406 (2017)
https://doi.org/10.1039/C7CP05267G
48 W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
49 P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
https://doi.org/10.1103/PhysRev.136.B864
50 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
51 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
52 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
53 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
54 A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008)
https://doi.org/10.1103/PhysRevB.78.134106
55 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 (2009)
https://doi.org/10.1088/0953-8984/21/39/395502
56 Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
https://doi.org/10.1016/j.cpc.2012.05.008
57 Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)
https://doi.org/10.1103/PhysRevB.82.094116
58 Y. Yao and J. S. Tse, Electron-phonon coupling in the high-pressure hcp phase of xenon: A first-principles study, Phys. Rev. B 75(13), 134104 (2007)
https://doi.org/10.1103/PhysRevB.75.134104
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed