Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 130319   https://doi.org/10.1007/s11467-018-0824-9
  本期目录
Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure
Zhi-Rong Zhong1(), Xin Wang2, Wei Qin3
1. Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
2. Institute of Quantum Optics and Quantum Information, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
3. Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China
 全文: PDF(654 KB)  
Abstract

We propose a method to entangle two vibrating microsize mirrors (i.e., mechanical oscillators) in a cavity optomechanical system. In this scheme, we discuss both the resonant and large-detuning conditions, and show that the entanglement of two mechanical oscillators can be achieved with the assistance of a two-level atom and cavity-radiation pressure. In the resonant case, the operation time is relatively short, which is desirable to minimize the effects of decoherence. While in the large-detuning case, the cavity is only virtually excited during the interaction. Therefore, the decay of the cavity is effectively suppressed, which makes the efficient decoherence time of the cavity to be greatly prolonged. Thus, we observe that this virtual-photon process of microscopic objects may induce the entanglement of macroscopic objects. Moreover, in both cases, the generation of entanglement is deterministic and no measurements on the atom and the cavity are required. These are experimentally important. Finally, the decoherence effect and the experimental feasibility of the proposal are briefly discussed.

Key wordscavity optomechanical system    atomic    entanglement
收稿日期: 2018-02-25      出版日期: 2018-09-10
Corresponding Author(s): Zhi-Rong Zhong   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 130319.
Zhi-Rong Zhong, Xin Wang, Wei Qin. Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Front. Phys. , 2018, 13(5): 130319.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0824-9
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/130319
1 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2010
https://doi.org/10.1017/CBO9780511976667
2 I. Buluta, S. Ashhab, and F. Nori, Natural and artificial atoms for quantum computation, Rep. Prog. Phys. 74(10), 104401 (2011)
https://doi.org/10.1088/0034-4885/74/10/104401
3 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
https://doi.org/10.1103/RevModPhys.86.1391
4 I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)
https://doi.org/10.1103/RevModPhys.86.153
5 Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
https://doi.org/10.1103/RevModPhys.85.623
6 W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification, Rev. Lett. 120(9), 093601 (2018)
https://doi.org/10.1103/PhysRevLett.120.093601
7 V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96(1), 010401 (2006)
https://doi.org/10.1103/PhysRevLett.96.010401
8 V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nat. Photonics 5(4), 222 (2011)
https://doi.org/10.1038/nphoton.2011.35
9 J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator, Nat. Phys. 12(7), 683 (2016)
10 K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, A quantum-enhanced prototype gravitational-wave detector, Nat. Phys. 4(6), 472 (2008)
11 U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, Quantum-enhanced micromechanical displacement sensitivity, Opt. Lett. 38(9), 1413 (2013)
https://doi.org/10.1364/OL.38.001413
12 R. C. Pooser and B. Lawrie, Ultrasensitive measurement of microcantilever displacement below the shotnoise limit, Optica 2(5), 393 (2015)
https://doi.org/10.1364/OPTICA.2.000393
13 C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23(8), 1693 (1981)
https://doi.org/10.1103/PhysRevD.23.1693
14 D. Kienzler, C. Flühmann, V. Negnevitsky, H. Y. Lo, M. Marinelli, D. Nadlinger, and J. P. Home, Observation of quantum interference between separated mechanical oscillator wave packets, Phys. Rev. Lett. 116(14), 140402 (2016)
https://doi.org/10.1103/PhysRevLett.116.140402
15 S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure, Phys. Rev. Lett. 88(12), 120401 (2002)
https://doi.org/10.1103/PhysRevLett.88.120401
16 K. J. Vahala, Optical microcavities, Nature 424(6950), 839 (2003)
https://doi.org/10.1038/nature01939
17 J. Eisert, M. B. Plenio, S. Bose, and J. Hartley, Towards quantum entanglement in nanoelectromechanical devices, Phys. Rev. Lett. 93(19), 190402 (2004)
https://doi.org/10.1103/PhysRevLett.93.190402
18 X. B. Yan, W. Z. Jia, Y. Li, J. H. Wu, X. L. Li, and H. W. Mu, Optomechanically induced amplification and perfect transparency in double-cavity optomechanics, Front. Phys. 10(3), 351 (2015)
https://doi.org/10.1007/s11467-015-0456-2
19 J. D. Jost, J. P. Home, J. M. Amini, D. Hanneke, R. Ozeri, C. Langer, J. J. Bollinger, D. Leibfried, and D. J. Wineland, Entangled mechanical oscillators, Nature 459(7247), 683 (2009)
https://doi.org/10.1038/nature08006
20 Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)
https://doi.org/10.1007/s11467-013-0384-y
21 J. Q. Liao and L. Tian, Macroscopic quantum superposition in cavity optomechanics, Phys. Rev. Lett. 116(16), 163602 (2016)
https://doi.org/10.1103/PhysRevLett.116.163602
22 C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. Clerk, A. Massel, M. J. Woolley, and M. A. Sillanpää, Stabilized entanglement of massive mechanical oscillators, Nature 556(7702), 478 (2018)
https://doi.org/10.1038/s41586-018-0038-x
23 R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, and S. Gröblacher, Remote quantum entanglement between two micromechanical oscillators, Nature 556(7702), 473 (2018)
https://doi.org/10.1038/s41586-018-0036-z
24 C. G. Liao, R. X. Chen, X. Hong, and X. M. Lin, Reservoir-engineered entanglement in a hybrid modulated three-mode optomechanical system, Phys. Rev. A 97(4), 042314 (2018)
https://doi.org/10.1103/PhysRevA.97.042314
25 R. X. Chen, C. G. Liao, and X. M. Lin, Dissipative generation of significant amount of mechanical entanglement in a coupled optomechanical system, Sci. Rep. 7(1), 14497 (2017)
https://doi.org/10.1038/s41598-017-15032-1
26 Q. Lin, B. He, R. Ghobadi, and C. Simon, Fully quantum approach to optomechanical entanglement, Phys. Rev. A 90(2), 022309 (2014)
https://doi.org/10.1103/PhysRevA.90.022309
27 E. Verhagen, S. Deleglise, S. Weis, A. Schliesser, and T. J. Kippenberg, Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode, Nature 482(7383), 63 (2012)
https://doi.org/10.1038/nature10787
28 T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Entangling mechanical motion with microwave fields, Science 342(6159), 710 (2013)
https://doi.org/10.1126/science.1244563
29 M. J. Hartmann and M. B. Plenio, Steady state entanglement in the mechanical vibrations of two dielectric membranes, Phys. Rev. Lett. 101(20), 200503 (2008)
https://doi.org/10.1103/PhysRevLett.101.200503
30 C. Joshi, J. Larson, M. Jonson, E. Andersson, and P. Öhberg, Entanglement of distant optomechanical systems, Phys. Rev. A 85(3), 033805 (2012)
https://doi.org/10.1103/PhysRevA.85.033805
31 Y. D. Wang and A. A. Clerk, Reservoir-engineered entanglement in optomechanical systems, Phys. Rev. Lett. 110(25), 253601 (2013)
https://doi.org/10.1103/PhysRevLett.110.253601
32 C. J. Yang, J. H. An, W. L. Yang, and Y. Li, Generation of stable entanglement between two cavity mirrors by squeezed-reservoir engineering, Phys. Rev. A 92(6), 062311 (2015)
https://doi.org/10.1103/PhysRevA.92.062311
33 H. Flayac, M. Minkov, and V. Savona, Remote macroscopic entanglement on a photonic crystal architecture, Phys. Rev. A 92(4), 043812 (2015)
https://doi.org/10.1103/PhysRevA.92.043812
34 J. Q. Liao, Q. Q. Wu, and F. Nori, Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system, Phys. Rev. A 89(1), 014302 (2014)
https://doi.org/10.1103/PhysRevA.89.014302
35 R. X. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Enhancement of entanglement in distant mechanical vibrations via modulation in a coupled optomechanical system, Phys. Rev. A 89(2), 023843 (2014)
https://doi.org/10.1103/PhysRevA.89.023843
36 X. W. Xu, Y. J. Zhao, and Y. X. Liu, Entangled-state engineering of vibrational modes in a multimembrane optomechanical system, Phys. Rev. A 88(2), 022325 (2013)
https://doi.org/10.1103/PhysRevA.88.022325
37 J. Q. Liao, J. F. Huang, and L. Tian, Generation of macroscopic Schrodinger-cat states in qubitoscillator systems, Phys. Rev. A 93(3), 033853 (2016)
https://doi.org/10.1103/PhysRevA.93.033853
38 L. Tian, Robust photon entanglement via quantum interference in optomechanical interfaces, Phys. Rev. Lett. 110(23), 233602 (2013)
https://doi.org/10.1103/PhysRevLett.110.233602
39 Y. D. Wang and A. A. Clerk, Reservoir-engineered entanglement in optomechanical systems, Phys. Rev. Lett. 110(25), 253601 (2013)
https://doi.org/10.1103/PhysRevLett.110.253601
40 Y. D. Wang, S. Chesi, and A. A. Clerk, Bipartite and tripartite output entanglement in three-mode optomechanical systems, Phys. Rev. A 91(1), 013807 (2015)
https://doi.org/10.1103/PhysRevA.91.013807
41 Z. J. Deng, X. B. Yan, Y. D. Wang, and C. W. Wu, Optimizing the output-photon entanglement in multimode optomechanical systems, Phys. Rev. A 93(3), 033842 (2016)
https://doi.org/10.1103/PhysRevA.93.033842
42 W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, Towards quantum superpositions of a mirror, Phys. Rev. Lett. 91(13), 130401 (2003)
https://doi.org/10.1103/PhysRevLett.91.130401
43 K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, Strong coupling of a mechanical oscillator and a single atom, Phys. Rev. Lett. 103(6), 063005 (2009)
https://doi.org/10.1103/PhysRevLett.103.063005
44 M. Wallquist, K. Hammerer, P. Zoller, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, J. Ye, and H. J. Kimble, Single-atom cavity QED and optomicromechanics, Phys. Rev. A 81(2), 023816 (2010)
https://doi.org/10.1103/PhysRevA.81.023816
45 J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, Cavity optomechanics mediated by a quantum two-level system, Nat. Commun. 6(1), 6981 (2015)
https://doi.org/10.1038/ncomms7981
46 J. Restrepo, C. Cristiano, and I. Favero, Singlepolariton optomechanics, Phys. Rev. Lett. 112(1), 013601 (2014)
https://doi.org/10.1103/PhysRevLett.112.013601
47 M. Cotrufo, A. Fiore, and E. Verhagen, Coherent atomphonon interaction through mode field coupling in hybrid optomechanical systems, Phys. Rev. Lett. 118(13), 133603 (2017)
https://doi.org/10.1103/PhysRevLett.118.133603
48 C. Genes, D. Vitali, and P. Tombesi, Emergence of atom-light-mirror entanglement inside an optical cavity, Phys. Rev. A 77, 050307(R) (2008)
49 B. Vogell, K. Stannigel, P. Zoller, K. Hammerer, M. T. Rakher, M. Korppi, A. Jöckel, and P. Treutlein, Cavityenhanced long-distance coupling of an atomic ensemble to a micromechanical membrane, Phys. Rev. A 87(2), 023816 (2013)
https://doi.org/10.1103/PhysRevA.87.023816
50 K. Y. Zhang, L. Zhou, G. Dong, and W. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)
https://doi.org/10.1007/s11467-011-0164-5
51 Y. Wu, B. Zhu, S.-F Hu, Z. Zhou, and H.-H. Zhong, Floquet control of the gain and loss in a PT-symmetric optical coupler, Front. Phys. 12, 121102 (2017)
https://doi.org/10.1007/s11467-016-0642-x
52 S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, Self-cooling of a micromirror by radiation pressure, Nature 444(7115), 67 (2006)
https://doi.org/10.1038/nature05273
53 O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror, Nature 444(7115), 71 (2006)
https://doi.org/10.1038/nature05244
54 I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)
https://doi.org/10.1103/PhysRevLett.99.093901
55 F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)
https://doi.org/10.1103/PhysRevLett.99.093902
56 A. Schliesser, R. Rivi’ere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys. 4(5), 415 (2008)
57 S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity, Nat. Phys. 5(7), 485 (2009)
58 T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, Preparation and detection of a mechanical resonator near the ground state of motion, Nature 463(7277), 72 (2010)
https://doi.org/10.1038/nature08681
59 A. Schliesser, O. Arcizet, R. Rivi’ere, G. Anetsberger, and T. J. Kippenberg, Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nat. Phys. 5(7), 509 (2009)
60 J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475(7356), 359 (2011)
https://doi.org/10.1038/nature10261
61 J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature 478(7367), 89 (2011)
https://doi.org/10.1038/nature10461
62 E. Verhagen, S. Del’eglise, S. Weis, A. Schliesser, and T. J. Kippenberg, Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode, Nature 482(7383), 63 (2012)
https://doi.org/10.1038/nature10787
63 T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172 (2008)
https://doi.org/10.1126/science.1156032
64 F. Marquardt and S. M. Girvin, Optomechanics, Physics (College Park Md.) 2, 40 (2009)
https://doi.org/10.1103/Physics.2.40
65 X. Wang, H. R. Li, P. B. Li, C. W. Jiang, H. Gao, and F. L. Li, Preparing ground states and squeezed states of nanomechanical cantilevers by fast dissipation, Phys. Rev. A 90(1), 013838 (2014)
https://doi.org/10.1103/PhysRevA.90.013838
66 T. Hong, H. Yang, H. Miao, and Y. Chen, Open quantum dynamics of single-photon optomechanical devices, Phys. Rev. A 88(2), 023812 (2013)
https://doi.org/10.1103/PhysRevA.88.023812
67 J. Q. Liao, H. K. Cheung, and C. K. Law, Spectrum of single-photon emission and scattering in cavity optomechanics, Phys. Rev. A 85(2), 025803 (2012)
https://doi.org/10.1103/PhysRevA.85.025803
68 B. He, Quantum optomechanics beyond linearization, Phys. Rev. A 85(6), 063820 (2012)
https://doi.org/10.1103/PhysRevA.85.063820
69 H. Xie, G. W. Lin, X. Chen, Z. H. Chen, and X. M. Lin, Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling, Phys. Rev. A 93(6), 063860 (2016)
https://doi.org/10.1103/PhysRevA.93.063860
70 X. W. Xu, Y. J. Li, and Y. X. Liu, Photon-induced tunneling in optomechanical systems, Phys. Rev. A 87(2), 025803 (2013)
https://doi.org/10.1103/PhysRevA.87.025803
71 A. Kronwald, M. Ludwig, and F. Marquardt, Full photon statistics of a light beam transmitted through an optomechanical system, Phys. Rev. A 87(1), 013847 (2013)
https://doi.org/10.1103/PhysRevA.87.013847
72 G. F. Xu and C. K. Law, Dark states of a moving mirror in the single-photon strong-coupling regime, Phys. Rev. A 87(5), 053849 (2013)
https://doi.org/10.1103/PhysRevA.87.053849
73 P. Rabl, Photon blockade effect in optomechanical systems, Phys. Rev. Lett. 107(6), 063601 (2011)
https://doi.org/10.1103/PhysRevLett.107.063601
74 J. Q. Liao and C. K. Law, Correlated two-photon scattering in cavity optomechanics, Phys. Rev. A 87(4), 043809 (2013)
https://doi.org/10.1103/PhysRevA.87.043809
75 A. Miranowicz, J. Bajer, N. Lambert, Y. X. Liu, and F. Nori, Tunable multiphonon blockade in coupled nanomechanical resonators, Phys. Rev. A 93(1), 013808 (2016)
https://doi.org/10.1103/PhysRevA.93.013808
76 A. Miranowicz, J. Bajer, M. Paprzycka, Y. X. Liu, A. M. Zagoskin, and F. Nori, State-dependent photon blockade via quantum-reservoir engineering, Phys. Rev. A 90(3), 033831 (2014)
https://doi.org/10.1103/PhysRevA.90.033831
77 H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system, Phys. Rev. A 92(3), 033806 (2015)
https://doi.org/10.1103/PhysRevA.92.033806
78 D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of single trapped ions, Rev. Mod. Phys. 75(1), 281 (2003)
https://doi.org/10.1103/RevModPhys.75.281
79 J. R. Johansson, P. D. Nation, and F. Nori, Qutip: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183(8), 1760 (2012)
https://doi.org/10.1016/j.cpc.2012.02.021
80 J. R. Johansson, P. D. Nation, and F. Nori, QuTiP2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184(4), 1234 (2013)
https://doi.org/10.1016/j.cpc.2012.11.019
81 R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
https://doi.org/10.1103/RevModPhys.81.865
82 S. B. Zheng and G. C. Guo, Efficient scheme for twoatom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85(11), 2392 (2000)
https://doi.org/10.1103/PhysRevLett.85.2392
83 W. H. Zurek, Decoherence and the transition from quantum to classical, Phys. Today 44(10), 36 (1991)
https://doi.org/10.1063/1.881293
84 L. F. Buchmann and D. M. Stamper-Kurn, Nondegenerate multimode optomechanics, Phys. Rev. A 92(1), 013851 (2015)
https://doi.org/10.1103/PhysRevA.92.013851
85 C. H. Bennett, G. Brassard, C. Cr’epeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
86 J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78(16), 3221 (1997)
https://doi.org/10.1103/PhysRevLett.78.3221
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed