Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 137503   https://doi.org/10.1007/s11467-018-0827-6
  本期目录
Enhancing the magnetoelectric coupling of Co4Nb2O9[100] by substituting Mg for Co
Zhen Li1, Yi-Ming Cao2, Yin Wang1(), Ya Yang3, Mao-Lin Xiang1, You-Shuang Yu1, Bao-Juan Kang1, Jin-Cang Zhang1, Shi-Xun Cao1()
1. Department of Physics, International Center for Quantum and Molecular Structures and Materials Genome Institute, Shanghai University, Shanghai 200444, China
2. Center for Magnetic Materials, Devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011, China
3. School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
 全文: PDF(2267 KB)  
Abstract

We report experimental studies on enhancing the magnetoelectric (ME) coupling of Co4Nb2O9 by substituting the non-magnetic metal Mg for Co. A series of single crystal Co4−xMgxNb2O9 (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure Co4Nb2O9 to 19 K and 11 K for Co3MgNb2O9 and Co2Mg2Nb2O9, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient αME of Co3MgNb2O9 required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted Co4−xMgxNb2O9 (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices.

Key wordssingle crystal    magnetoelectric coupling    substitution
收稿日期: 2018-05-03      出版日期: 2018-09-10
Corresponding Author(s): Yin Wang,Shi-Xun Cao   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 137503.
Zhen Li, Yi-Ming Cao, Yin Wang, Ya Yang, Mao-Lin Xiang, You-Shuang Yu, Bao-Juan Kang, Jin-Cang Zhang, Shi-Xun Cao. Enhancing the magnetoelectric coupling of Co4Nb2O9[100] by substituting Mg for Co. Front. Phys. , 2018, 13(5): 137503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0827-6
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/137503
1 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Spintronics: A spin-based electronics vision for the future, Science 294(5546), 1488 (2001)
https://doi.org/10.1126/science.1065389
2 A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
3 W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442(7104), 759 (2006)
https://doi.org/10.1038/nature05023
4 T. H. O′Dell, The electrodynamics of magneto-electric media, Philos. Mag. 7(82), 1653 (1970)
5 F. Manfred, Revival of the magnetoelectric effect, J. Cheminform. 36(33), R123 (2015)
6 S. W. Cheong and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, Nat. Mater. 6(1), 13 (2007)
https://doi.org/10.1038/nmat1804
7 M. Tokunaga, Studies on multiferroic materials in high magnetic fields, Front. Phys. 7(4), 386 (2012)
https://doi.org/10.1007/s11467-011-0203-2
8 Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, Low-field magnetoelectric effect at room temperature, Nat. Mater. 9(10), 797 (2010)
https://doi.org/10.1038/nmat2826
9 S. Zhang, J. M. Dong, and J. M. Liu, Ferroelectricity generated by spin-orbit and spin-lattice couplings in multiferroic DyMnO3, Front. Phys. 7(4), 408 (2012)
https://doi.org/10.1007/s11467-011-0225-9
10 G. Zhang, S. Dong, Z. Yan, Y. Guo, Q. Zhang, S. Yunoki, E. Dagotto, and J. M. Liu, Multiferroic Properties of CaMn7O12, Phys. Rev. B 84(17), 174413 (2011)
https://doi.org/10.1103/PhysRevB.84.174413
11 T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A. P. Ramirez, Cupric oxide as an induced-multiferroic with high-Tc, Nat. Mater. 7(4), 291 (2008)
https://doi.org/10.1038/nmat2125
12 Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. H. Arima, and Y. Tokura, Composite domain walls in a multiferroic perovskite ferrite, Nat. Mater. 8(7), 558 (2009)
https://doi.org/10.1038/nmat2469
13 Y. Yamaguchi, T. Nakano, Y. Nozue, and T. Kimura, Magnetoelectric effect in an XY-like spin glass system NixMn1−xTiO3, Phys. Rev. Lett. 108(5), 057203 (2012)
https://doi.org/10.1103/PhysRevLett.108.057203
14 E. F. Bertaut, L. Corliss, F. Forrat, R. Aleonard, and R. Pauthenet, Etude de niobates et tantalates de metaux de transition bivalents, J. Phys. Chem. Solids 21(3–4), 234 (1961)
https://doi.org/10.1016/0022-3697(61)90103-2
15 E. Fischer, G. Gorodetsky, and R. M. Hornreich, A new family of magnetoelectric materials, A2M4O9 (A= Ta, Nb; M= Mn, Co), Solid State Commun. 10(12), 1127 (1972)
https://doi.org/10.1016/0038-1098(72)90927-1
16 Y. Fang, S. Yan, L. Zhang, Z. Han, B. Qian, D. Wang, Y. Du, and B. Raveau, Magnetic-field-induced dielectric anomaly and electric polarization in Co4Ta2O9, J. Am. Ceram. Soc. 98(7), 2005 (2015)
https://doi.org/10.1111/jace.13651
17 Y. Fang, W. P. Zhou, S. M. Yan, R. Bai, Z. H. Qian, Q. Y. Xu, D. H. Wang, and Y. W. Du, Magnetic-fieldinduced dielectric anomaly and electric polarization in Mn4Nb2O9, J. Appl. Phys. 117, 17B712 (2015)
18 B. B. Liu, Y. Fang, Z. D. Han, S. M. Yan, W. P. Zhou, B. Qian, D. H. Wang, and Y. W. Du, Magnetodielectric and magnetoelectric effect in Mn4Ta2O9, Mater. Lett. 164, 425 (2016)
https://doi.org/10.1016/j.matlet.2015.11.025
19 Y. Cao, M. Xiang, Z. J. Feng, B. J. Kang, J. C. Zhang, N. Guiblin, and S. X. Cao, Single crystal growth of Mn4Nb2O9 and its structure-magnetic coupling, Rsc Adv 7(23), 13846 (2017)
https://doi.org/10.1039/C6RA26231G
20 Y. Fang, Y. Q. Song, W. P. Zhou, R. Zhao, R. J. Tang, H. Yang, L. Y. Lv, S. G. Yang, D. H. Wang, and Y. W. Du, Large magnetoelectric coupling in Co4Nb2O9, Sci. Rep. 4(1), 3860 (2015)
https://doi.org/10.1038/srep03860
21 L. H. Yin, Y. M. Zou, J. Yang, J. M. Dai, W. H. Song, X. B. Zhu, and Y. P. Sun, Colossal magnetodielectric effect and spin flop in magnetoelectric Co4Nb2O9 crystal, Appl. Phys. Lett. 109(3), 032905 (2016)
https://doi.org/10.1063/1.4959086
22 N. D. Khanh, N. Abe, H. Sagayama, A. Nakao, T. Hanashima, R. Kiyanagi, Y. Tokunaga, and T. Arima, Magnetoelectric coupling in the honeycomb antiferromagnet Co4Nb2O9, Phys. Rev. B 93(7), 075117 (2016)
https://doi.org/10.1103/PhysRevB.93.075117
23 Y. Cao, G. C. Deng, P. Beran, Z. Feng, B. J. Kang, J. C. Zhang, N. Guiblin, B. Dkhil, W. Ren, and S. X. Cao, Nonlinear magnetoelectric effect in paraelectric state of Co4Nb2O9 single crystal, Sci. Rep. 7(1), 14079 (2017)
https://doi.org/10.1038/s41598-017-14169-3
24 C. Dhanasekhar, S. K. Mishra, R. Rawat, A. K. Das, and A. Venimadhav, Coexistence of weak ferromagnetism with magnetoelectric coupling in Fe substituted Co4Nb2O9, J. Alloys Compd. 726, 148 (2017)
https://doi.org/10.1016/j.jallcom.2017.07.323
25 G. C. Deng, Y. M. Cao, W. Ren, S. X. Cao, A. J. Studer, N. Gauthier, M. Kenzelmann, G. Davidson, K. C. Rule, J. S. Gardner, P. Imperia, C. Ulrich, and G. J. McIntyre, Spin dynamics and magnetoelectric coupling mechanism of Co4Nb2O9, Phys. Rev. B 97(8), 085154 (2018)
https://doi.org/10.1103/PhysRevB.97.085154
26 H. M. Rietveld, Line profiles of neutron powderdiffraction peaks for structure refinement, Acta Crystallogr. A 22(1), 151 (1967)
https://doi.org/10.1107/S0365110X67000234
27 J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B 192(1–2), 55 (1993)
https://doi.org/10.1016/0921-4526(93)90108-I
28 The lattice constants of CMNO with different Mg concentrations at room temperature are measured to be a= b= 5.1667(4), 5.1678(4), and 5.1663(9) Å, c= 14.0853(9), 14.0967(9), and 14.0568(5) Å for x= 1, 2, and 3, respectively.
29 Private communications.
30 Y. M. Cao, Y. Yang, M. L. Xiang, Z. Feng, B. J. Kang, J. C. Zhang, W. Ren, and S. X. Cao, High-quality single crystal growth and spin flop of multiferroic Co4Nb2O9, J. Cryst. Growth 420, 90 (2015)
https://doi.org/10.1016/j.jcrysgro.2015.03.045
31 A. Iyama and T. Kimura, Magnetoelectric hysteresis loops in Cr2O3 at room temperature, Phys. Rev. B 87(18), 180408 (2013)
https://doi.org/10.1103/PhysRevB.87.180408
32 N. Mufti, G. R. Blake, M. Mostovoy, S. Riyadi, A. A. Nugroho, and T. T. M. Palstra, Magnetoelectric coupling in MnTiO3, Phys. Rev. B 83(10), 104416 (2011)
https://doi.org/10.1103/PhysRevB.83.104416
33 J. Hwang, E. S. Choi, H. D. Zhou, J. Lu, and P. Schlottmann, Magnetoelectric effect in NdCrTiO5, Phys. Rev. B 85(2), 024415 (2012)
https://doi.org/10.1103/PhysRevB.85.024415
34 J. N. Zhuang, Y. Wang, Y. Zhou, J. Wang, and H. Guo, Impurity-limited quantum transport variability in magnetic tunnel junctions, Front. Phys. 12(4), 127304 (2017)
https://doi.org/10.1007/s11467-016-0644-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed