Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (6): 132106   https://doi.org/10.1007/s11467-018-0828-5
  本期目录
Study of various few-body systems using Gaussian expansion method (GEM)
Emiko Hiyama1,2(), Masayasu Kamimura2
1. Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
2. Nishina Center, RIKEN, Wako 351-0198, Japan
 全文: PDF(5120 KB)  
Abstract

We review our calculation method, Gaussian expansion method (GEM), to solve accurately the Schrödinger equations for bound, resonant and scattering states of few-body systems. Use is made of the Rayleigh-Ritz variational method for bound states, the complex-scaling method for resonant states and the Kohn-type variational principle to S-matrix for scattering states. GEM was proposed 30 years ago and has been applied to a variety of subjects in few-body (3- to 5-body) systems, such as 1) few-nucleon systems, 2) few-body structure of hypernuclei, 3) clustering structure of light nuclei and unstable nuclei, 4) exotic atoms/molecules, 5) cold atoms, 6) nuclear astrophysics and 7) structure of exotic hadrons. Showing examples in our published papers, we explain i) high accuracy of GEM calculations and its reason, ii) wide applicability of GEM to various few-body systems, iii) successful predictions by GEM calculations before measurements. The total bound-state wave function is expanded in terms of few-body Gaussian basis functions spanned over all the sets of rearrangement Jacobi coordinates. Gaussians with ranges in geometric progression work very well both for shortrange and long-range behavior of the few-body wave functions. Use of Gaussians with complex ranges gives much more accurate solution than in the case of real-range Gaussians, especially, when the wave function has many nodes (oscillations). These basis functions can well be applied to calculations using the complex-scaling method for resonances. For the few-body scattering states, the amplitude of the interaction region is expanded in terms of those few-body Gaussian basis functions.

Key wordsfew-body problems    Gaussian expansion method    Gaussian ranges in geometric progression
收稿日期: 2018-07-12      出版日期: 2018-12-13
Corresponding Author(s): Emiko Hiyama   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(6): 132106.
Emiko Hiyama, Masayasu Kamimura. Study of various few-body systems using Gaussian expansion method (GEM). Front. Phys. , 2018, 13(6): 132106.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0828-5
https://academic.hep.com.cn/fop/CN/Y2018/V13/I6/132106
1 M. Kamimura, Nonadiabatic coupled-rearrangementchannel approach to muonic molecules, Phys. Rev. A 38(2), 621 (1988)
https://doi.org/10.1103/PhysRevA.38.621
2 H. Kameyama, M. Kamimura, and Y. Fukushima, Coupled-rearrangement-channel Gaussian-basis variational method for trinucleon bound states, Phys. Rev. C 40(2), 974 (1989)
https://doi.org/10.1103/PhysRevC.40.974
3 E. Hiyama, Y. Kino, and M. Kamimura, Gaussian expansion method for few-body systems, Prog. Part. Nucl. Phys. 51(1), 223 (2003)
https://doi.org/10.1016/S0146-6410(03)90015-9
4 E. Hiyama, Few-body aspects of hypernuclear physics, Few-Body Syst. 53(3–4), 189 (2012)
https://doi.org/10.1007/s00601-011-0296-8
5 E. Hiyama, Gaussian expansion method for few-body systems and its applications to atomic and nuclear physics, Prog. Theor. Exp. Phys. 2012(1), 01A204 (2012)
6 D. E. Groom, et al.(Particle Data Group), Reviews, tables, and plots in the 2000 review of particle physics, Eur. Phys. J. C 15, 1 (2000)
7 H. A. Torii, R. S. Hayano, M. Hori, T. Ishikawa, N. Morita, et al., Laser measurements of the density shifts of resonance lines in antiprotonic helium atoms and stringent constraint on the antiproton charge and mass, Phys. Rev. A 59(1), 223 (1999)
https://doi.org/10.1103/PhysRevA.59.223
8 Y. Kino, M. Kamimura, and H. Kudo, High-accuracy 3- body coupled-channel calculation of metastable states of antiprotonic helium atoms, Nucl. Phys. A 631, 649 (1998)
https://doi.org/10.1016/S0375-9474(98)00084-0
9 Y. Kino, M. Kamimura, and H. Kudo, Non-adiabatic high-precision calculation of antiprotonic helium atomcules, Hyperfine Interact. 119(1/4), 201 (1999)
https://doi.org/10.1023/A:1012695627542
10 E. Hiyama, RCNP Physics Report (Research Center for Nuclear Physics, Osaka Univ.), RCNP-P 132, 35 (1994)
11 E. Hiyama, Proceedings of International Workshop on the 4-Body Problems, Uppsala, 1995 (Uppsala Univ., 1996), p. 28
12 S. Aoyama, T. Myo, K. Kato, and K. Ikeda, The complex scaling method for many-body resonances and its applications to three-body resonances, Prog. Theor. Phys. 116(1), 1 (2006)
https://doi.org/10.1143/PTP.116.1
13 M. Kamimura, A coupled channel variational method for microscopic study of reactions between complex nuclei, Prog. Theor. Phys. Suppl.62, 236 (1977)
https://doi.org/10.1143/PTPS.62.236
14 E. Hiyama and M. Kamimura, Variational calculation of 4He tetramer ground and excited states using a realistic pair potential, Phys. Rev. A 85(2), 022502 (2012)
https://doi.org/10.1103/PhysRevA.85.022502
15 E. Hiyama and M. Kamimura, Linear correlations between 4He trimer and tetramer energies calculated with various realistic 4He potentials, Phys. Rev. A 85(6), 062505 (2012)
https://doi.org/10.1103/PhysRevA.85.062505
16 E. Hiyama and M. Kamimura, Universality in Efimovassociated tetramers in 4He, Phys. Rev. A 90(5), 052514 (2014)
https://doi.org/10.1103/PhysRevA.90.052514
17 S. Ohtsubo, Y. Fukushima, M. Kamimura, and E. Hiyama, Complex-scaling calculation of three-body resonances using complex-range Gaussian basis functions: Application to 3αresonances in 12C, Prog. Theor. Exp. Phys. 2013(7), 073D02 (2013)
18 T. Matsumoto, T. Kamizato, K. Ogata, Y. Iseri, E. Hiyama, M. Kamimura, and M. Yahiro, New treatment of breakup continuum in the method of continuum discretized coupled channels, Phys. Rev. C 68(6), 064607 (2003)
https://doi.org/10.1103/PhysRevC.68.064607
19 T. Matsumoto, E. Hiyama, K. Ogata, Y. Iseri, M. Kamimura, S. Chiba, and M. Yahiro, Continuumdiscretized coupled-channels method for four-body nuclear breakup in 6He+12C scattering, Phys. Rev. C 70(6), 061601 (2004)
https://doi.org/10.1103/PhysRevC.70.061601
20 M. Kamimura, E. Hiyama, and Y. Kino, Big bang nucleosynthesis reactions catalyzed by a long lived negatively charged leptonic particle, Prog. Theor. Phys. 121(5), 1059 (2009)
https://doi.org/10.1143/PTP.121.1059
21 H. Preuss, Bemerkungen zum Self-consistent-field-Verfahren und zur Methode der Konfigurationenwechselwirkung in der Quantenchemie, Z. Naturforsch 11a, 823 (1956)
22 J. L. Whitten, Gaussian expansion of hydrogen-atom wavefunctions, J. Chem. Phys. 39(2), 349 (1963)
https://doi.org/10.1063/1.1734251
23 H. Sambe, Use of 1 s Gaussian wavefunctions for molecular calculations (I): The hydrogen atom and the hydrogen molecule ion, J. Chem. Phys. 42(5), 1732 (1965)
https://doi.org/10.1063/1.1696185
24 J. F. Harrison, On the Gaussian-Lobe representation of atomic orbitals, J. Chem. Phys. 46(3), 1115 (1967)
https://doi.org/10.1063/1.1840776
25 A. A. Frost, Floating spherical gaussian orbital model of molecular structure (I): Computational procedure, LiH as an example, J. Chem. Phys. 47(10), 3707 (1967)
https://doi.org/10.1063/1.1701524
26 K. Nagamine and M. Kamimura, Muon catalyzed fusion: Interplay between nuclear and atomic physics, Advance in Nuclear Physics 24, 151 (1998)
27 V. I. Korobov, I. V. Puzynin, and S. I. Vinitsky, A variational calculation of weakly bound rotationalvibrational states of the mesic molecules ddμand dtμ, Phys. Lett. B 196(3), 272 (1987)
https://doi.org/10.1016/0370-2693(87)90729-5
28 S. A. Alexander and H. J. Monkhorst, High-accuracy calculation of muonic molecules using random-tempered basis sets, Phys. Rev. 38(1), 26 (1988)
https://doi.org/10.1103/PhysRevA.38.26
29 R. B. Wiringa, R. A. Smith, and T. A. Ainsworth, Nucleon-nucleon potentials with and without D(1232) degrees of freedom, Phys. Rev. C 29(4), 1207 (1984)
https://doi.org/10.1103/PhysRevC.29.1207
30 M. Kamimura and H. Kameyama, Coupled rearrangement channel calculations of muonic molecules and A= 3 nuclei, Nucl. Phys. A 508, 17 (1990)
https://doi.org/10.1016/0375-9474(90)90459-Y
31 S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D. W. E. Blatt, and B. H. J. McKellar, The two-pion-exchange three-nucleon potential and nuclear matter, Nucl. Phys. A 317(1), 242 (1979)
https://doi.org/10.1016/0375-9474(79)90462-7
32 C. R. Chen, G. L. Payne, J. L. Frier, and B. F. Gibson, Convergence of Faddeev partial-wave series for triton ground state, Phys. Rev. C 31(6), 2266 (1985)
https://doi.org/10.1103/PhysRevC.31.2266
33 S. Ishikawa and T. Sasakawa, Faddeev partial-wave calculations with a three-nucleon potential for the triton ground state, Few-Body Syst. 1(3), 143 (1986)
https://doi.org/10.1007/BF01077005
34 T. Sasakawa, in: Proceedings of the Workshop on Electron Nucleus Scattering, Elba International physics Center, Italy, 1988
35 Y. Wu, S. Ishikawa, and T. Sasakawa, Private communications (1989)
36 G. L. Payne and B. F. Gibson, Variational aspects of Faddeev calculations, Few-Body Syst. 14(3), 117 (1993)
https://doi.org/10.1007/BF01076019
37 H. Kamada, A. Nogga, W. Glöckle, E. Hiyama, M. Kamimura, et al., Leidemann, and G. Orlandini, Benchmark test calculation of a four-nucleon bound state, Phys. Rev. C 64(4), 044001 (2001)
https://doi.org/10.1103/PhysRevC.64.044001
38 B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper, and R. B. Wiringa, Quantum Monte Carlo calculations of nuclei with A≤7, Phys. Rev. C 56(4), 1720 (1997)
https://doi.org/10.1103/PhysRevC.56.1720
39 E. Hiyama, B. F. Gibson and M. Kamimura, Fourbody calculation of the first excited state of 4He using a realistic NN interaction: 4He (e, e′)4He (0+2 ) and the monopole sum rule, Phys. Rev. C 70, 031001(R) (2004)
40 W. Horiuchi and Y. Suzuki, Excited states and strength functions of 4He in correlated gaussians, Few-Body Syst. 54(12), 2407 (2013)
https://doi.org/10.1007/s00601-012-0495-y
41 C. Caso, et al.(Particle Data Group), Review of Particle Physics, Eur. Phys. J. C 3(1–4), 1 (1998)
42 Y. Kino, M. Kamimura, and H. Kudo, High-precision calculation of antiprotonic helium atomcules and antiproton mass, Few-Body Syst. Suppl. 12, 40 (2000)
43 Y. Kino, N. Yamanaka, M. Kamimura, P. Froelich, and H. Kudo, High-precision calculation of the energy levels and auger decay rates of the metastable states of the antiprotonic helium atoms, Hyperfine Interact. 138(1/4), 179 (2001)
https://doi.org/10.1023/A:1020827623323
44 E. Braaten and H. W. Hammer, Universality in fewbody systems with large scattering length, Phys. Rep. 428(5–6), 259 (2006)
https://doi.org/10.1016/j.physrep.2006.03.001
45 R. A. Aziz and M. J. Slaman, An examination of ab initioresults for the helium potential energy curve, J. Chem. Phys. 94(12), 8047 (1991)
https://doi.org/10.1063/1.460139
46 R. Lazauskas and J. Carbonell, Description of He4 tetramer bound and scattering states, Phys. Rev. A 73(6), 062717 (2006)
https://doi.org/10.1103/PhysRevA.73.062717
47 M. Hori, J. Eades, R. S. Hayano, T. Ishikawa, J. Sakaguchi, E. Widmann, H. Yamaguchi, H. A. Torii, B. Juhász, D. Horváth, and T. Yamazaki, Sub-ppm laser spectroscopy of antiprotonic helium and a CPTviolation limit on the antiprotonic charge and mass, Phys. Rev. Lett. 87, 093401 (2001)
https://doi.org/10.1103/PhysRevLett.87.093401
48 K. Hagiwara, et al.(Particle Data Group), Review of particle properties, Phys. Rev. D 66(1), 010001 (2002)
https://doi.org/10.1103/PhysRevD.66.010001
49 T. Motoba, H. Bando, and K. Ikeda, Light p-shellhypernuclei by the microscopic three-cluster model, Prog. Theor. Phys. 70(1), 189 (1983)
https://doi.org/10.1143/PTP.70.189
50 T. Motoba, H. Bando, K. Ikeda, and T. Yamada, Production, structure an decay of light p-shell L- hypernuclei, Prog. Theor. Phys. Suppl. 81, 42 (1985)
https://doi.org/10.1143/PTPS.81.42
51 E. Hiyama, M. Kamimura, K. Miyazaki, and T. Motoba, γtransitions in A= 7 hypernuclei and a possible derivation of hypernuclear size, Phys. Rev. C 59(5), 2351 (1999)
https://doi.org/10.1103/PhysRevC.59.2351
52 E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Three-body model study of A= 6–7 hypernuclei: Halo and skin structures, Phys. Rev. C 53(5), 2075 (1996)
https://doi.org/10.1103/PhysRevC.53.2075
53 E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Three- and four-body structure of light hypernuclei, Nucl. Phys. A 684(1–4), 227 (2001)
https://doi.org/10.1016/S0375-9474(01)00418-3
54 K. Tanida, H. Tamura, D. Abe, H. Akikawa, K. Araki, et al., Measurement of the B(E2) of 6 ΛLi and shrinkage of the hypernuclear size, Phys. Rev. Lett. 86(10), 1982 (2001)
https://doi.org/10.1103/PhysRevLett.86.1982
55 E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Three- and four-body cluster models of hypernuclei using the G-matrix N interaction: 9Be, 13C, 6He and 10Be, Prog. Theor. Phys. 97(6), 881 (1997)
https://doi.org/10.1143/PTP.97.881
56 E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, LN spin-orbit splittings in 9ΛBe and 13ΛC studied with one-boson-exchange LNinteractions, Phys. Rev. Lett. 85(2), 270 (2000)
https://doi.org/10.1103/PhysRevLett.85.270
57 H. Akikawa, S. Ajimura, R. E. Chrien, P. M. Eugenio, G. B. Franklin, et al., Hypernuclear fine structure in 9ΛBe, Phys. Rev. Lett. 88(8), 082501 (2002)
https://doi.org/10.1103/PhysRevLett.88.082501
58 S. Ajimura, H. Hayakawa, T. Kishimoto, H. Kohri, K. Matsuoka, et al., Observation of spin-orbit splitting in Lsingle-particle states, Phys. Rev. Lett. 86(19), 4255 (2001)
https://doi.org/10.1103/PhysRevLett.86.4255
59 M. M. Nagels, T. A. Rijken, and J. J. deSwart, Baryonbaryon scattering in a one-boson-exchange-potential approach (I): Nucleon-nucleon scattering, Phys. Rev. D 12, 744 (1975)
https://doi.org/10.1103/PhysRevD.12.744
60 M. M. Nagels, T. A. Rijken, and J. J. deSwart, Baryonbaryon scattering in a one-boson-exchange-potential approach (II): Hyperon-nucleon scattering, Phys. Rev. D 15, 2547 (1977)
https://doi.org/10.1103/PhysRevD.15.2547
61 M. M. Nagels, T. A. Rijken, and J. J. deSwart, Baryonbaryon scattering in a one-boson-exchange-potential approach (III): A nucleon-nucleon and hyperon-nucleon analysis including contributions of a nonet of scalar mesons, Phys. Rev. D 20, 1633 (1979)
https://doi.org/10.1103/PhysRevD.20.1633
62 T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Softcore hyperon-nucleon potentials, Phys. Rev. C 59(1), 21 (1999)
https://doi.org/10.1103/PhysRevC.59.21
63 O. Morimatsu, S. Ohta, K. Shimizu, and K. Yazaki, Baryon-baryon spin-orbit interaction in a quark model, Nucl. Phys. A 420(3), 573 (1984)
https://doi.org/10.1016/0375-9474(84)90672-9
64 Y. Fujiwara, C. Nakamoto, and Y. Suzuki, Unified description of NNand YNinteractions in a quark model with effective meson-exchange potentials, Phys. Rev. Lett. 76(13), 2242 (1996)
https://doi.org/10.1103/PhysRevLett.76.2242
65 E. Hiyama, Y. Yamamoto, T. Motoba, and M. Kamimura, Structure of A= 7 iso-triplet Λ hypernuclei studied with the four-body cluster model, Phys. Rev. C 80(5), 054321 (2009)
https://doi.org/10.1103/PhysRevC.80.054321
66 S. N. Nakamura, A. Matsumura, Y. Okayasu, T. Seva, V. M. Rodriguez, et al., Observation of the 7ΛHe hypernucleus by the (e, eK+) reaction, Phys. Rev. Lett. 110(1), 012502 (2013)
https://doi.org/10.1103/PhysRevLett.110.012502
67 T. Gogami, DissertationTip, Tohoku University, 2014
68 E. Hiyama, M. Isaka, M. Kamimura, T. Myo, and T. Motoba, Resonant states of the neutron-rich Λ hypernucleus 7ΛHe, Phys. Rev. C 91(5), 054316 (2015)
https://doi.org/10.1103/PhysRevC.91.054316
69 J. K. Ahn, et al., in: Hadron and Nuclei, AIP Conf. Proc. No. 594, Ed. II-Tong Cheon, et al., AIP, Meville, NY, 2001, page 180
70 A. Ichikawa, DissertationTip, Kyoto University, 2001
71 K. Nakazawa, et al., Double-Λ hypernuclei via the Ξ– hyperon capture at rest reaction in a hybrid emulsion, Nucl. Phys. A 835(1–4), 207 (2010) (The proceedings on the 10th International Conference on Hypernuclear and Strange Particle Physics (Hyp X), Tokai, Sept. 14–18, 2009)
72 J. K. Ahn, H. Akikawa, S. Aoki, K. Arai, S. Y. Bahk, et al., Double-Λ hypernuclei observed in a hybrid emulsion experiment, Phys. Rev. C 88(1), 014003 (2013)
https://doi.org/10.1103/PhysRevC.88.014003
73 E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, and Y. Yamamoto, Four-body cluster structure of A= 7– 10 double-Λ hypernuclei, Phys. Rev. C 66(2), 024007 (2002)
https://doi.org/10.1103/PhysRevC.66.024007
74 E. Hiyama, M. Kamimura, Y. Yamamoto, and T. Motoba, Five-body cluster structure of the double-Λ hypernucleus 11ΛΛBe, Phys. Rev. Lett. 104(21), 212502 (2010)
https://doi.org/10.1103/PhysRevLett.104.212502
75 E. Hiyama and T. Yamada, Structure of light hypernuclei, Prog. Part. Nucl. Phys. 63(2), 339 (2009)
https://doi.org/10.1016/j.ppnp.2009.05.001
76 E. Hiyama, M. Kamimura, Y. Yamamoto, T. Motoba, and T. A. Rijken, S=–1 hypernuclear structure, Prog. Theor. Phys. Suppl. 185, 106 (2010)
https://doi.org/10.1143/PTPS.185.106
77 E. Hiyama, M. Kamimura, Y. Yamamoto, T. Motoba, and T. A. Rijken, S= –2 hypernuclear structure, Prog. Theor. Phys. Suppl. 185, 152 (2010)
https://doi.org/10.1143/PTPS.185.152
78 J. Aguilar and J. M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians, Commun. Math. Phys. 22(4), 269 (1971)
https://doi.org/10.1007/BF01877510
79 E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatationanalytic interactions, Commun. Math. Phys. 22(4), 280 (1971)
https://doi.org/10.1007/BF01877511
80 B. Simon, Quadratic form techniques and the Balslev– Combes theorem, Commun. Math. Phys. 27(1), 1 (1972)
https://doi.org/10.1007/BF01649654
81 Y. K. Ho, The method of complex coordinate rotation and its applications to atomic collision processes, Phys. Rep. 99(1), 1 (1983)
https://doi.org/10.1016/0370-1573(83)90112-6
82 N. Moiseyev, Quantum theory of resonances: Calculating energies, widths and cross-sections by complex scaling, Phys. Rep. 302(5–6), 212 (1998)
https://doi.org/10.1016/S0370-1573(98)00002-7
83 E. Hiyama, R. Lazauskas, J. Carbonell, and M. Kamimura, Possibility of generating a 4-neutron resonance with a T= 3/2 isospin 3-neutron force, Phys. Rev. C 93(4), 044004 (2016)
https://doi.org/10.1103/PhysRevC.93.044004
84 K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, et al., Candidate resonant tetraneutron state populated by the 4He (8He, 8Be) reaction, Phys. Rev. Lett. 116(5), 052501 (2016)
https://doi.org/10.1103/PhysRevLett.116.052501
85 C. Kurokawa and K. Katō, New broad 0+ state in 12C, Phys. Rev. C 71, 021301(R) (2005)
86 M. Kusakabe, G. J. Mathews, T. Kajino, and M. K. Cheoun, Review on effects of long-lived negatively charged massive particles on Big Bang Nucleosynthesis, Int. J. Mod. Phys. E 26(08), 1741004 (2017)
https://doi.org/10.1142/S021830131741004X
87 F. Iocco, G. Mangano, G. Miele, O. Pisanti, and P. D. Serpico, Primordial nucleosynthesis: From precision cosmology to fundamental physics, Phys. Rep. 472(1–6), 1 (2009)
https://doi.org/10.1016/j.physrep.2009.02.002
88 M. Kamimura, Non-adiabatic coupled-rearrangementchannels approach to muonic molecules and muon transfer reactions, Muon Catal. Fusion 3, 335 (1988)
89 Y. Kino and M. Kamimura, Non-adiabatic calculation of muonic atom-nucleus collisions, Hyperfine Interactions 82(1–4), 45 (1993)
https://doi.org/10.1007/BF01027943
90 J. S. Cohen and M. C. Struensee, Improved adiabatic calculation of muonic-hydrogen-atom cross sections (I): Isotopic exchange and elastic scattering in asymmetric collisions, Phys. Rev. A 43, 3460 (1991)
https://doi.org/10.1103/PhysRevA.43.3460
91 C. Chiccoli, V. I. Korobov, V. S. Melezhik, P. Pasini, L. I. Ponomarev, and J. Wozniak, The atlas of the cross sections of mesic atomic processes (III): The process +(d, t), +(p, t) and +(p, d), Muon Catal. Fusion 7, 87 (1992)
92 O. I. Tolstikhin, and C. Namba, Hyperspherical calculations of low-energy rearrangement processes in dtμ, Phys. Rev. A 60(6), 5111 (1999)
https://doi.org/10.1103/PhysRevA.60.5111
93 K. Hamaguchi, T. Hatsuda, M. Kamimura, Y. Kino, and T. T. Yanagida, Stau-catalyzed 6Li production in big-bang nucleosynthesis, Phys. Lett. B 650(4), 268 (2007)
https://doi.org/10.1016/j.physletb.2007.05.030
94 M. Kubo, J. Sato, T. Shimomura, Y. Takanishi, and M. Yamanaka, Big-bang nucleosynthesis and leptogenesis in the CMSSM, Phys. Rev. D 97(11), 115013 (2018)
https://doi.org/10.1103/PhysRevD.97.115013
95 M. Kusakabe, K. S. Kim, M. K. Cheoun, T. Kajino, and Y. Kino, 7Be charge exchange between 7Be3+ ion and an exotic long-lived negatively charged massive particle in big bang nucleosynthesis, Phys. Rev. D 88(6), 063514 (2013)
https://doi.org/10.1103/PhysRevD.88.063514
96 S. Bailly, K. Jedamzik, and G. Moultaka, Gravitino dark matter and the cosmic lithium abundances, Phys. Rev. D 80(6), 063509 (2009)
https://doi.org/10.1103/PhysRevD.80.063509
97 E. Hiyama, M. Kamimura, A. Hosaka, H. Toki, and M. Yahiro, Five-body calculation of resonance and scattering states of pentaquark system, Phys. Lett. B 633(2–3), 237 (2006)
https://doi.org/10.1016/j.physletb.2005.11.086
98 T. Nakano, et al.. (LEPS Collaboration), Evidence for a narrow S= +1 baryon resonance in photoproduction from the neutron, Phys. Rev. Lett. 91(1), 012002 (2003)
https://doi.org/10.1103/PhysRevLett.91.012002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed