Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (1): 13605   https://doi.org/10.1007/s11467-018-0831-x
  本期目录
Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice
Ai-Yuan Hu1, Huai-Yu Wang2()
1. College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
2. Department of Physics, Tsinghua University, Beijing 100084, China
 全文: PDF(1486 KB)  
Abstract

We have comprehensively investigated the frustrated J1-J2-J3 Heisenberg model on a simple cubic lattice. This model allows three regimes of magnetic order, viz., (π; π; π), (0; π; π) and (0; 0; π), denoted as AF1, AF2, and AF3, respectively. The effects of the interplay of neighboring couplings on the model are studied in the entire temperature range. The zero temperature magnetic properties of this model are discussed utilizing the linear spin wave (LSW) theory, nonlinear spin wave (NLSW) theory, and Green’s function (GF) method. The zero temperature phase diagrams evaluated by the LSW and NLSW methods are illustrated, and are observed to exhibit different parameter boundaries. In certain regions and along the parameter boundaries, the possible phase transformations driven by the parameters are discussed. The results obtained using the LSW, NLSW, and GF methods are compared with those obtained using the series expansion (SE) method, and are observed to be in good agreement when the value of J2 is not close to the parameter boundaries. The ground state energies obtained using the LSW and NLSW methods are close to that obtained using the SE method. At finite temperatures, only the GF method is employed to evaluate the magnetic properties, and the calculated phase diagram is observed to be identical to the classical phase diagram. The results indicate that at the parameter boundaries, a temperature-driven first-order phase transition between AF1 and AF2 may occur along the boundary line. Along the AF1-AF3 and AF2-AF3 boundary lines, AF3 is less stable than AF1 and AF2. Our calculated critical temperature agrees with that obtained using Monte Carlo simulations and pseudofermion functional renormalization group scheme.

Key wordsquantized spin models    quantum phase transitions    antiferromagnetics
收稿日期: 2018-05-04      出版日期: 2019-01-01
Corresponding Author(s): Huai-Yu Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(1): 13605.
Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice. Front. Phys. , 2019, 14(1): 13605.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0831-x
https://academic.hep.com.cn/fop/CN/Y2019/V14/I1/13605
1 C. Lacroix, P. Mendels, and F. Mila, Introduction to Frustrated Magnetism, Springer, Berlin, 2011
https://doi.org/10.1007/978-3-642-10589-0
2 H. T. Diep, Frustrated Spin Systems, 2nd Ed., World Scientific, Singapore, 2013
https://doi.org/10.1142/8676
3 J. Richter, J. Schulenburg, and A. Honecker, in: Quantum Magnetism, edited by U. Schollwöck, J. Richter, D. J. J. Farnell, and R. F. Bishop, Lecture Notes in Physics Vol. 645, Springer, Berlin, 2004, pp 85–153
https://doi.org/10.1007/BFb0119592
4 L. Capriotti, F. Becca, A. Parola, and S. Sorella, Resonating Valence Bond Wave Functions for Strongly Frustrated Spin Systems, Phys. Rev. Lett. 87(9), 097201 (2001)
https://doi.org/10.1103/PhysRevLett.87.097201
5 J. Sirker, Z. Weihong, O. P. Sushkov, and J. Oitmaa, J1-J2 model: First-order phase transition versus deconfinement of spinons, Phys. Rev. B 73(18), 184420 (2006)
https://doi.org/10.1103/PhysRevB.73.184420
6 J. Richter, N. B. Ivanov, and K. Retzlaff, On the violation of Marshall–Peierls sign rule in the frustrated J1-J2 Heisenberg antiferromagnet, Europhys. Lett. 25(7), 545 (1994)
https://doi.org/10.1209/0295-5075/25/7/012
7 M. Mambrini, A. Läuchli, D. Poilblanc, and F. Mila, Plaquette valence-bond crystal in the frustrated Heisenberg quantum antiferromagnet on the square lattice, Phys. Rev. B 74(14), 144422 (2006)
https://doi.org/10.1103/PhysRevB.74.144422
8 R. F. Bishop, P. H. Y. Li, R. Darradi, J. Schulenburg, and J. Richter, Effect of anisotropy on the groundstate magnetic ordering of the spin-half quantum JXXZ1-JXXZ2 model on the square lattice, Phys. Rev. B 78(5), 054412 (2008)
https://doi.org/10.1103/PhysRevB.78.054412
9 R. Darradi, O. Derzhko, R. Zinke, J. Schulenburg, S. E. Krüger, and J. Richter, Ground state phases of the spin- 1/2 J1-J2 Heisenberg antiferromagnet on the square lattice: A high-order coupled cluster treatment, Phys. Rev. B 78(21), 214415 (2008)
https://doi.org/10.1103/PhysRevB.78.214415
10 V. Murg, F. Verstraete, and J. I. Cirac, Exploring frustrated spin systems using projected entangled pair states, Phys. Rev. B 79(19), 195119 (2009)
https://doi.org/10.1103/PhysRevB.79.195119
11 J. Richter and J. Schulenburg, The spin-1/2 J1 t J2 Heisenberg antiferromagnet on the square lattice: Exact diagonalization for N=40 spins, Eur. Phys. J. B 73(1), 117 (2010)
https://doi.org/10.1140/epjb/e2009-00400-4
12 J. Reuther and P. Wölfle, J1-J2 frustrated twodimensional Heisenberg model: Random phase approximation and functional renormalization group, Phys. Rev. B 81(14), 144410 (2010)
https://doi.org/10.1103/PhysRevB.81.144410
13 H. C. Jiang, H. Yao, and L. Balents, Spin liquid ground state of the spin-1/2 square J1-J2 Heisenberg model, Phys. Rev. B 86(2), 024424 (2012)
https://doi.org/10.1103/PhysRevB.86.024424
14 L. Wang, D. Poilblanc, Z. C. Gu, X. G. Wen, and F. Verstraete, Constructing a gapless spin-liquid state for the spin-1/2 J1-J2 heisenberg model on a square lattice, Phys. Rev. Lett. 111(3), 037202 (2013)
https://doi.org/10.1103/PhysRevLett.111.037202
15 W.-J. Hu, F. Becca, A. Parola and S. Sorella, Direct evidence for a gapless Z2 spin liquid by frustrating Néel antiferromagnetism, Phys. Rev. B 88(6), 060402(R) (2013)
16 S. S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, Plaquette ordered phase and quantum phase diagram in the spin-1/2 J1-J2 square Heisenberg model, Phys. Rev. Lett. 113(2), 027201 (2014)
https://doi.org/10.1103/PhysRevLett.113.027201
17 A. Metavitsiadis, D. Sellmann and S. Eggert, Spin-liquid versus dimer phases in an anisotropic J1-J2 frustrated square antiferromagnet, Phys. Rev. B 89(24), 241104(R) (2014)
18 J. Richter, R. Zinke, and D. J. J. Farnell, The spin- 1/2 square-lattice J1-J2 model: The spin-gap issue, Eur. Phys. J. B 88(1), 2 (2015)
https://doi.org/10.1140/epjb/e2014-50589-x
19 A. F. Barabanov, A. V. Mikheyenkov, and N. A. Kozlov, Quantum phase transition in a frustrated twodimensional magnetic system: A matrix projection approach, JETP Lett. 102(5), 301 (2015)
https://doi.org/10.1134/S0021364015170038
20 S. Morita, R. Kaneko, and M. Imada, Quantum spin liquid in spin 1/2 J1-J2 Heisenberg model on square lattice: Many-variable variational Monte Carlo study combined with quantum-number projections, J. Phys. Soc. Jpn. 84(2), 024720 (2015)
https://doi.org/10.7566/JPSJ.84.024720
21 T. P. Cysne and M. B. Silva Neto, Magnetic quantum phase transitions of the two-dimensional antiferromagnetic J1-J2 Heisenberg model, Europhys. Lett. 112(4), 47002 (2015)
https://doi.org/10.1209/0295-5075/112/47002
22 C. A. Lamas, D. C. Cabra, P. Pujol, and G. L. Rossini, Path integral approach to order by disorder selection in partially polarized quantum spin systems, Eur. Phys. J. B 88(7), 176 (2015)
https://doi.org/10.1140/epjb/e2015-60211-6
23 K. Majumdar and T. Datta, Zero temperature phases of the frustrated J1-J2 antiferromagnetic spin-1/2 Heisenberg model on a simple cubic lattice,J. Stat. Phys. 139(4), 714 (2010)
https://doi.org/10.1007/s10955-010-9967-y
24 A. F. Barabanov, V. M. Beresovsky, and E. Ža¸sinas, Quantum phase transitions in a three-dimensional frustrated S= 12 Heisenberg antiferromagnet, Phys. Rev. B 52(14), 10177 (1995)
https://doi.org/10.1103/PhysRevB.52.10177
25 D. J. J. Farnell, O. Götze, and J. Richter, Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices, Phys. Rev. B 93(23), 235123 (2016)
https://doi.org/10.1103/PhysRevB.93.235123
26 J. R. Viana, J. R. de Sousa, and M. A. Continentino, Quantum phase transition in the threedimensional anisotropic frustrated Heisenberg antiferromagnetic model, Phys. Rev. B 77(17), 172412 (2008)
https://doi.org/10.1103/PhysRevB.77.172412
27 C. Pinettes and H. T. Diep, Phase transition and phase diagram of the J1-J2 Heisenberg model on a simple cubic lattice, J. Appl. Phys. 83(11), 6317 (1998)
https://doi.org/10.1063/1.367729
28 Y. Iqbal, R. Thomale, F. Parisen Toldin, S. Rachel, and J. Reuther, Functional renormalization group for threedimensional quantum magnetism, Phys. Rev. B 94(14), 140408(R) (2016)
29 J. Oitmaa, Frustrated J1-J2-J3 Heisenberg antiferromagnet on the simple cubic lattice, Phys. Rev. B 95(1), 014427 (2017)
https://doi.org/10.1103/PhysRevB.95.014427
30 F. Ma, Z. Y. Lu, and T. Xiang, Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO, Phys. Rev. B 78(22), 224517 (2008)
https://doi.org/10.1103/PhysRevB.78.224517
31 A. S. T. Pires, Anisotropic easy axis S= 1 antiferromagnetic Heisenberg model with competitive interaction on a square lattice, Solid State Commun. 193, 56 (2014)
https://doi.org/10.1016/j.ssc.2014.05.028
32 H.Y. Wang, Green’s Function in Condensed Matter Physics, Alpha Science International Ltd. and Science Press, Beijing, 2012
33 J. Oitmaa, C. J. Hamer, and W. Zheng, Heisenberg antiferromagnet and the XYmodel at T= 0 in three dimensions, Phys. Rev. B 50(6), 3877 (1994)
https://doi.org/10.1103/PhysRevB.50.3877
34 A. W. Sandvik, Critical temperature and the transition from quantum to classical order parameter fluctuations in the three-dimensional Heisenberg antiferromagnet, Phys. Rev. Lett. 80(23), 5196 (1998)
https://doi.org/10.1103/PhysRevLett.80.5196
35 H. Y. Wang, L. J. Zhai, and M. Qian, The internal energies of Heisenberg magnetic systems, J. Magn. Magn. Mater. 354(3), 309 (2014)
https://doi.org/10.1016/j.jmmm.2013.11.024
36 P. Fröbrich and P. J. Kuntz, Many-body Green’s function theory of Heisenberg films, Phys. Rep. 432(5–6), 223 (2006)
https://doi.org/10.1016/j.physrep.2006.07.002
37 T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58(12), 1098 (1940)
https://doi.org/10.1103/PhysRev.58.1098
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed