Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 130320   https://doi.org/10.1007/s11467-018-0832-9
  本期目录
Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state
Kan Wang1(), Xu-Tao Yu2, Zai-Chen Zhang1
1. National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
2. State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
 全文: PDF(524 KB)  
Abstract

Quantum teleportation is of significant meaning in quantum information. In this paper, we study the probabilistic teleportation of a two-qubit entangled state via a partially entangled Greenberger- Horne-Zeilinger (GHZ) state when the quantum channel information is only available to the sender. We formulate it as an unambiguous state discrimination problem and derive exact optimal positive-operator valued measure (POVM) operators for maximizing the probability of unambiguous discrimination. Only one three-qubit POVM for the sender, one two-qubit unitary operation for the receiver, and two cbits for outcome notification are required in this scheme. The unitary operation is given in the form of a concise formula, and the fidelity is calculated. The scheme is further extended to more general case for transmitting a two-qubit entangled state prepared in arbitrary form. We show this scheme is flexible and applicable in the hop-by-hop teleportation situation.

Key wordsprobabilistic teleportation    optimal POVM    state discrimination    average fidelity
收稿日期: 2018-04-12      出版日期: 2018-09-10
Corresponding Author(s): Kan Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 130320.
Kan Wang, Xu-Tao Yu, Zai-Chen Zhang. Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state. Front. Phys. , 2018, 13(5): 130320.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0832-9
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/130320
1 S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9(10), 641 (2015)
https://doi.org/10.1038/nphoton.2015.154
2 C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
3 L. Gyongyosi and S. Imre, Entanglement-gradient routing for quantum networks, Sci. Rep. 7(1), 14255 (2017)
https://doi.org/10.1038/s41598-017-14394-w
4 K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A 89(2), 022329 (2014)
https://doi.org/10.1103/PhysRevA.89.022329
5 N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)
https://doi.org/10.1103/RevModPhys.74.145
6 H. L. Huang, Y. W. Zhao, T. Li, F. G. Li, Y. T. Du, X. Q. Fu, S. Zhang, X. Wang, and W. S. Bao, Homomorphic encryption experiments on IBM’s cloud quantum computing platform, Front. Phys. 12(1), 120305 (2017)
https://doi.org/10.1007/s11467-016-0643-9
7 N. Gisin, How far can one send a photon? Front. Phys. 10(6), 100307 (2015)
https://doi.org/10.1007/s11467-015-0485-x
8 S. Imre and L. Gyongyosi, Advanced Quantum Communications: An En-gineering Approach, Wiley-IEEE Press, 2013
9 D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
https://doi.org/10.1038/37539
10 X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
https://doi.org/10.1038/nature14246
11 L. Gyongyosi, S. Imre, and H. V. Nguyen, A survey on quantum channel capacities, IEEE Comm. Surv. and Tutor. 20(2), 1149 (2018)
https://doi.org/10.1109/COMST.2017.2786748
12 R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
https://doi.org/10.1103/RevModPhys.81.865
13 L. Gyongyosi, Quantum imaging of high-dimensional Hilbert spaces with Radon transform, Int. J. Circuit Theory Appl. 45(7), 1029 (2017)
https://doi.org/10.1002/cta.2332
14 M. Ikram, S. Y. Zhu, and M. S. Zubairy, Quantum teleportation of an entangled state, Phys. Rev. A 62(2), 022307 (2000)
https://doi.org/10.1103/PhysRevA.62.022307
15 W. L. Li, C. F. Li, and G. C. Guo, Probabilistic teleportation and entanglement matching, Phys. Rev. A 61(3), 034301 (2000)
https://doi.org/10.1103/PhysRevA.61.034301
16 X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)
https://doi.org/10.1007/s11467-014-0432-2
17 D. Liu, Z. Huang, and X. Guo, Probabilistic teleportation via quantum channel with partial information, Entropy (Basel) 17(6), 3621 (2015)
https://doi.org/10.3390/e17063621
18 P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
https://doi.org/10.1007/s11467-016-0553-x
19 D. Qiu and L. Li, Minimum-error discrimination of quantum states: Bounds and comparisons, Phys. Rev. A 81(4), 042329 (2010)
https://doi.org/10.1103/PhysRevA.81.042329
20 S. Bandyopadhyay, Unambiguous discrimination of linearly independent pure quantum states: Optimal average probability of success, Phys. Rev. A 90(3), 030301 (2014)
https://doi.org/10.1103/PhysRevA.90.030301
21 H. Sugimoto, T. Hashimoto, M. Horibe, and A. Hayashi, Complete solution for unambiguous discrimination of three pure states with real inner products, Phys. Rev. A 82(3), 032338 (2010)
https://doi.org/10.1103/PhysRevA.82.032338
22 A. Chefles, Unambiguous discrimination between linearly independent quantum states, Phys. Lett. A 239(6), 339 (1998)
https://doi.org/10.1016/S0375-9601(98)00064-4
23 Y. C. Eldar, A semidefinite programming approach to optimal unambiguous discrimination of quantum states, IEEE Trans. Inf. Theory 49(2), 446 (2003)
https://doi.org/10.1109/TIT.2002.807291
24 K. Nakahira, K. Kato, and T. S. Usuda, Generalized quantum state discrimination problems, Phys. Rev. A 91(5), 052304 (2015)
https://doi.org/10.1103/PhysRevA.91.052304
25 R. B. M. Clarke, A. Chefles, S. M. Barnett, and E. Riis, Experimental demonstration of optimal unambiguous state discrimination, Phys. Rev. A 63(4), 040305 (2001)
https://doi.org/10.1103/PhysRevA.63.040305
26 O. Jiménez, X. Sánchez-Lozano, E. Burgos-Inostroza, A. Delgado, and C. Saavedra, Experimental scheme for unambiguous discrimination of linearly independent symmetric states, Phys. Rev. A 76, 062107 (2007)
https://doi.org/10.1103/PhysRevA.76.062107
27 S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004
https://doi.org/10.1017/CBO9780511804441
28 W. Son, J. Lee, M. S. Kim, and Y. J. Park, Conclusive teleportation of a d-dimensional unknown state, Phys. Rev. A 64(6), 064304 (2001)
https://doi.org/10.1103/PhysRevA.64.064304
29 L. Roa, A. Delgado, and I. Fuentes-Guridi, Optimal conclusive teleportation of quantum states, Phys. Rev. A 68(2), 022310 (2003)
https://doi.org/10.1103/PhysRevA.68.022310
30 H. Liu, X. Q. Xiao, and J. M. Liu, Conclusive teleportation of an arbitrary three-particle state via positive operator-valued measurement, Commum. Theor. Phys. 50(1), 69 (2008)
https://doi.org/10.1088/0253-6102/50/1/14
31 G. Brassard, P. Horodecki, and T. Mor, TelePOVM—A generalized quantum teleportation scheme, IBM J. Res. Develop. 48(1), 87 (2004)
https://doi.org/10.1147/rd.481.0087
32 C. H. Bennett and D. P. DiVincenzo, Towards an engineering era? Nature 377(6548), 389 (1995)
https://doi.org/10.1038/377389a0
33 B. He and J. A. Bergou, A general approach to physical realization of unambiguous quantum-state discrimination, Phys. Lett. A 356(4–5), 306 (2006)
https://doi.org/10.1016/j.physleta.2006.03.076
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed