Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (6): 132107   https://doi.org/10.1007/s11467-018-0833-8
  本期目录
Symmetries of the interacting boson model
P. Van Isacker()
Grand Accélérateur National d’Ions Lourds, CEA/DRF–CNRS/IN2P3 Bd Henri Becquerel, BP 55027, F-14076 Caen, France
 全文: PDF(8757 KB)  
Abstract

This contribution reviews the symmetry properties of the interacting boson model of Arima and Iachello. While the concept of a dynamical symmetry is by now a familiar one, this is not necessarily so for the extended notions of partial dynamical symmetry and quasi dynamical symmetry, which can be beautifully illustrated in the context of the interacting boson model. The main conclusion of the analysis is that dynamical symmetries are scarce while their partial and quasi extensions are ubiquitous.

Key wordsinteracting boson model
收稿日期: 2018-07-13      出版日期: 2018-12-13
Corresponding Author(s): P. Van Isacker   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(6): 132107.
P. Van Isacker. Symmetries of the interacting boson model. Front. Phys. , 2018, 13(6): 132107.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0833-8
https://academic.hep.com.cn/fop/CN/Y2018/V13/I6/132107
1 A. Arima and F. Iachello, Collective nuclear states as representations of a SU(6) group, Phys. Rev. Lett. 35(16), 1069 (1975)
https://doi.org/10.1103/PhysRevLett.35.1069
2 J. Rainwater, Nuclear energy level argument for a spheroidal nuclear model, Phys. Rev. 79(3), 432 (1950)
https://doi.org/10.1103/PhysRev.79.432
3 A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26, 14 (1952)
4 D. M. Brink, A. F. R. De Toledo Piza, and A. K. Kerman, Interval rules and intensity ratios in vibrating spherical nuclei, Phys. Lett. 19(5), 413 (1965)
https://doi.org/10.1016/0031-9163(65)90922-4
5 A. Bohr and B. R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27, 16 (1953)
6 L. Wilets and M. Jean, Surface oscillations in even-even nuclei, Phys. Rev. C 102, 788 (1956)
7 A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Collective nuclear states as symmetric couplings of proton and neutron excitations, Phys. Lett. B 66(3), 205 (1977)
https://doi.org/10.1016/0370-2693(77)90860-7
8 T. Otsuka, A. Arima, and F. Iachello, Nuclear shell model and interacting bosons, Nucl. Phys. A 309(1–2), 1 (1978)
https://doi.org/10.1016/0375-9474(78)90532-8
9 T. Otsuka, A. Arima, F. Iachello, and I. Talmi, Shell model description of interacting bosons, Phys. Lett. B 76(2), 139 (1978)
https://doi.org/10.1016/0370-2693(78)90260-5
10 J. P. Elliott and A. P. White, An isospin invariant form of the interacting boson model, Phys. Lett. B 97(2), 169 (1980)
https://doi.org/10.1016/0370-2693(80)90573-0
11 J. P. Elliott and J. A. Evans, An intrinsic spin for interacting bosons, Phys. Lett. B 101(4), 216 (1981)
https://doi.org/10.1016/0370-2693(81)90297-5
12 E. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei, Phys. Rev. 51(2), 106 (1937)
https://doi.org/10.1103/PhysRev.51.106
13 G. Racah, Theory of complex spectra (III), Phys. Rev. 63(9–10), 367 (1943)
https://doi.org/10.1103/PhysRev.63.367
14 G. Racah, Theory of complex spectra (IV), Phys. Rev. 76(9), 1352 (1949)
https://doi.org/10.1103/PhysRev.76.1352
15 J. P. Elliott, Collective motion in the nuclear shell model (I): Classification schemes for states of mixed configurations, Proc. R. Soc. Lond. A 245(1240), 128 (1958)
https://doi.org/10.1098/rspa.1958.0072
16 J. P. Elliott, Collective motion in the nuclear shell model (II): The introduction of intrinsic wave-functions, Proc. R. Soc. Lond. A 245(1243), 562 (1958)
https://doi.org/10.1098/rspa.1958.0101
17 F. Iachello, Lie Algebras and Applications, Springer, Berlin, 2006
18 A. Frank, J. Jolie, and P. Van Isacker, Symmetries in Atomic Nuclei, Springer, Berlin, 2009
https://doi.org/10.1007/978-0-387-87495-1
19 P. Van Isacker, Partial and quasi dynamical symmetries in nuclei, Nucl. Phys. News 24(3), 23 (2014)
https://doi.org/10.1080/10619127.2014.883479
20 J. N. Ginocchio and M. W. Kirson, Relationship between the Bohr collective hamiltonian and the interacting-boson model, Phys. Rev. Lett. 44(26), 1744 (1980)
https://doi.org/10.1103/PhysRevLett.44.1744
21 A. E. L. Dieperink, O. Scholten, and F. Iachello, Classical limit of the interacting-boson model, Phys. Rev. Lett. 44(26), 1747 (1980)
https://doi.org/10.1103/PhysRevLett.44.1747
22 A. Bohr and B. R. Mottelson, Features of nuclear deformations produced by the alignment of individual particles or pairs, Phys. Scr. 22(5), 468 (1980)
https://doi.org/10.1088/0031-8949/22/5/008
23 A. Bohr and B. R. Mottelson, Nuclear Structure (II): Nuclear Deformations, Benjamin, New York, 1975
24 R. Gilmore, Catastrophe Theory for Scientists and Engineers, Wiley, New York, 1981
25 E. López-Moreno and O. Castaños, Shapes and stability within the interacting boson model: Dynamical symmetries, Phys. Rev. C 54(5), 2374 (1996)
https://doi.org/10.1103/PhysRevC.54.2374
26 J. Jolie, P. Cejnar, R. F. Casten, S. Heinze, A. Linnemann, and V. Werner, Triple point of nuclear deformations, Phys. Rev. Lett. 89(18), 182502 (2002)
https://doi.org/10.1103/PhysRevLett.89.182502
27 R. F. Casten, Shape phase transitions and critical-point phenomena in atomic nuclei, Nat. Phys. 2(12), 811 (2006)
28 P. Cejnar, J. Jolie, and R. F. Casten, Quantum phase transitions in the shapes of atomic nuclei, Rev. Mod. Phys. 82(3), 2155 (2010)
https://doi.org/10.1103/RevModPhys.82.2155
29 O. Castaños, E. Chacón, A. Frank, and M. Moshinsky, Group theory of the interacting boson model of the nucleus, J. Math. Phys. 20(1), 35 (1979)
https://doi.org/10.1063/1.523959
30 A. Arima and F. Iachello, Interacting boson model of collective states (I): The vibrational limit, Ann. Phys. 99(2), 253 (1976)
https://doi.org/10.1016/0003-4916(76)90097-X
31 A. Arima and F. Iachello, Interacting boson model of collective nuclear states (II): The rotational limit, Ann. Phys. 111(1), 201 (1978)
https://doi.org/10.1016/0003-4916(78)90228-2
32 A. Arima and F. Iachello, Interacting boson model of collective nuclear states (IV): The O(6) limit, Ann. Phys. 123(2), 468 (1979)
https://doi.org/10.1016/0003-4916(79)90347-6
33 A. M. Shirokov, N. A. Smirnova, and Yu. F. Smirnov, Parameter symmetry of the interacting boson model, Phys. Lett. B 434(3–4), 237 (1998)
https://doi.org/10.1016/S0370-2693(98)00791-6
34 F. Iachello and A. Arima, The Interacting Boson Model, Cambridge University Press, Cambridge, 1987
https://doi.org/10.1017/CBO9780511895517
35 D. D. Warner, and R. F. Casten, Predictions of the interacting boson approximation in a consistent Qframework, Phys. Rev. C 28(4), 1798 (1983)
https://doi.org/10.1103/PhysRevC.28.1798
36 P. O. Lipas, P. Toivonen, and D. D. Warner, IBA consistent-Qformalism extended to the vibrational region, Phys. Lett. B 155(5–6), 295 (1985)
https://doi.org/10.1016/0370-2693(85)91573-4
37 R. F. Casten, Status of experimental tests of the IBA, in: Interacting Bose–Fermi Systems in Nuclei, edited by F. Iachello, Plenum, New York, 1981, page 3
https://doi.org/10.1007/978-1-4757-1523-1_1
38 P. Cejnar and J. Jolie, Dynamical-symmetry content of transitional IBM-1 hamiltonians, Phys. Lett. B 420(3–4), 241 (1998)
https://doi.org/10.1016/S0370-2693(97)01533-5
39 Y. Alhassid and A. Leviatan, Partial dynamical symmetry, J. Phys. A 25(23), L1265 (1992)
https://doi.org/10.1088/0305-4470/25/23/001
40 A. Leviatan, Partial dynamical symmetry in deformed nuclei, Phys. Rev. Lett. 77(5), 818 (1996)
https://doi.org/10.1103/PhysRevLett.77.818
41 A. Leviatan, A. Novoselsky, and I. Talmi, O(5) symmetry in IBA-1 — the O(6)–U(5) transition region, Phys. Lett. B 172(2), 144 (1986)
https://doi.org/10.1016/0370-2693(86)90824-5
42 P. Van Isacker, Dynamical symmetry and higher-order interactions, Phys. Rev. Lett. 83(21), 4269 (1999)
https://doi.org/10.1103/PhysRevLett.83.4269
43 A. Leviatan and P. Van Isacker, Generalized partial dynamical symmetry in nuclei, Phys. Rev. Lett. 89(22), 222501 (2002)
https://doi.org/10.1103/PhysRevLett.89.222501
44 A. Leviatan, Partial dynamical symmetries, Prog. Part. Nucl. Phys. 66(1), 93 (2011)
https://doi.org/10.1016/j.ppnp.2010.08.001
45 C. Kremer, J. Beller, A. Leviatan, N. Pietralla, G. Rainovski, R. Trippel, and P. Van Isacker, Linking partial and quasi dynamical symmetries in rotational nuclei, Phys. Rev. C 89, 041302(R) (2014)
46 F. Pan and J. P. Draayer, New algebraic solutions for SO(6)↔U(5) transitional nuclei in the interacting boson model, Nucl. Phys. A 636(2), 156 (1998)
https://doi.org/10.1016/S0375-9474(98)00207-3
47 D. J. Rowe, P. Rochford, and J. Repka, Dynamic structure and embedded representation in physics: The group theory of the adiabatic approximation, J. Math. Phys. 29(3), 572 (1988)
https://doi.org/10.1063/1.528049
48 D. J. Rowe, C. Bahri, and W. Wijesundera, Exactly solvable model of a superconducting to rotational phase transition, Phys. Rev. Lett. 80(20), 4394 (1998)
https://doi.org/10.1103/PhysRevLett.80.4394
49 C. Bahri and D. J. Rowe, SU(3) quasi-dynamical symmetry as an organizational mechanism for generating nuclear rotational motions, Nucl. Phys. A 662(1–2), 125 (2000)
50 M. Macek, J. Dobeš, and P. Cejnar, Transition from γ-rigid to γ-soft dynamics in the interacting boson model: Quasicriticality and quasidynamical symmetry, Phys. Rev. C 80(1), 014319 (2009)
https://doi.org/10.1103/PhysRevC.80.014319
51 D. Bonatsos, E. A. McCutchan, and R. F. Casten, SU(3) quasidynamical symmetry underlying the Alhassid–Whelan arc of regularity, Phys. Rev. Lett. 104(2), 022502 (2010)
https://doi.org/10.1103/PhysRevLett.104.022502
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed