Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (1): 13401   https://doi.org/10.1007/s11467-018-0836-5
  本期目录 |  
The art of designing carbon allotropes
Run-Sen Zhang, Jin-Wu Jiang()
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
 全文: PDF(7542 KB)  
Abstract

Stimulated by the success of graphene and diamond, a variety of carbon allotropes have been discovered in recent years in either two-dimensional or three-dimensional configurations. Although these emerging carbon allotropes share some common features, they have certain different and novel mechanical or physical properties. In this review, we present a comparative survey of some of the major properties of fifteen newly discovered carbon allotropes. By comparing their structural topology, we propose a general route for designing most carbon allotropes from two mother structures, namely, graphene and diamond. Furthermore, we discuss several future prospects as well as current challenges in designing new carbon allotropes.

Key wordscarbon allotropes    mechanical properties
收稿日期: 2018-05-15      出版日期: 2019-01-01
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(1): 13401.
Run-Sen Zhang, Jin-Wu Jiang. The art of designing carbon allotropes. Front. Phys. , 2019, 14(1): 13401.
 链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0836-5
http://academic.hep.com.cn/fop/CN/Y2019/V14/I1/13401
1 R. Hoffmann, A. A. Kabanov, A. A. Golov, and D. M. Proserpio, Homo Citans and carbon allotropes: For an ethics of citation, Angew. Chem. Int. Ed. 55(37), 10962 (2016)
https://doi.org/10.1002/anie.201600655
2 A. E. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. Scott, and A. P. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Anal. Chem. 56(4), 667 (1984)
https://doi.org/10.1021/ac00268a018
3 D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries, Electrochim. Acta 45(1–2), 67 (1999)
https://doi.org/10.1016/S0013-4686(99)00194-2
4 J. F. Rusling and A. E. F. Nassar, Enhanced electron transfer for myoglobin in surfactant films on electrodes, J. Am. Chem. Soc. 115(25), 11891 (1993)
https://doi.org/10.1021/ja00078a030
5 D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli, and H. Cohen, A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures, J. Electrochem. Soc. 143(12), 3809 (1996)
https://doi.org/10.1149/1.1837300
6 M. Lichinchi, C. Lenardi, J. Haupt, and R. Vitali, Simulation of Berkovich nanoindentation experiments on thin films using finite element method, Thin Solid Films 312(1–2), 240 (1998)
https://doi.org/10.1016/S0040-6090(97)00739-6
7 R. Saha, Z. Xue, Y. Huang, and W. D. Nix, Indentation of a soft metal film on a hard substrate: Strain gradient hardening effects, J. Mech. Phys. Solids 49(9), 1997 (2001)
https://doi.org/10.1016/S0022-5096(01)00035-7
8 J. Cao, Y. Wu, D. Lu, M. Fujimoto, and M. Nomura, Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool, Int. J. Mach. Tools Manuf. 79, 49 (2014)
https://doi.org/10.1016/j.ijmachtools.2014.02.002
9 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
10 H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318(6042), 162 (1985)
https://doi.org/10.1038/318162a0
11 F. Diederich and M. Kivala, All-carbon scaffolds by rational design, Adv. Mater. 22(7), 803 (2010)
https://doi.org/10.1002/adma.200902623
12 C. Hug and S. W. Cranford, Sparse fulleryne structures enhance potential hydrogen storage and mobility, J. Mater. Chem. A 5, 21223 (2017)
https://doi.org/10.1039/C7TA05387H
13 J. Cremers, R. Haver, M. Rickhaus, J. Q. Gong, L. Favereau, M. D. Peeks, T. Claridge, L. M. Herz, and H. L. Anderson, Template-directed synthesis of a conjugated zinc porphyrin nanoball, J. Am. Chem. Soc. 140(16), 5352 (2018)
https://doi.org/10.1021/jacs.8b02552
14 E. Estrada and Y. Sim’on-Manso, Escherynes: Novel carbon allotropes with belt shapes, Chem. Phys. Lett. 548, 80 (2012)
https://doi.org/10.1016/j.cplett.2012.07.063
15 A. Kochaev, A. Karenin, R. Meftakhutdinov, and R. Brazhe, 2D supracrystals as a promising materials for planar nanoacoustoelectronics, J. Phys.: Conf. Ser. 345, 012007 (2012)
https://doi.org/10.1088/1742-6596/345/1/012007
16 E. Belenkov and I. Shakhova, Structure of carbinoid nanotubes and carbinofullerenes, Phys. Solid State 53(11), 2385 (2011)
https://doi.org/10.1134/S1063783411110059
17 A. N. Enyashin and A. L. Ivanovskii, Graphene allotropes,physica status solidi (b) 248, 1879 (2011)
18 J. B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res. 46(5), 1053 (2013)
https://doi.org/10.1021/ar2002705
19 Z. Ogumi and H. Wang, Carbon Anode Materials, Springer, 2009
20 D. H. Doughty, Materials issues in lithium ion rechargeable battery technology, Sampe Journal 32, 75 (1995)
21 K. McElhaney, J. Vlassak, and W. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res. 13(05), 1300 (1998)
https://doi.org/10.1557/JMR.1998.0185
22 A. Richter, R. Ries, R. Smith, M. Henkel, and B. Wolf, Nanoindentation of diamond, graphite and fullerene films, Diamond Related Materials 9(2), 170 (2000)
https://doi.org/10.1016/S0925-9635(00)00188-6
23 W. Ni, Y. T. Cheng, and D. S. Grummon, Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions, Appl. Phys. Lett. 82(17), 2811 (2003)
https://doi.org/10.1063/1.1569984
24 D. J. Sprouster, S. Ruffell, J. E. Bradby, J. S. Williams, M. N. Lockrey, M. R. Phillips, R. C. Major, and O. L. Warren, Structural characterization of B-doped diamond nanoindentation tips, J. Mater. Res. 26(24), 3051 (2011)
https://doi.org/10.1557/jmr.2011.377
25 C. Soutis, Fibre reinforced composites in aircraft construction, Prog. Aerosp. Sci. 41(2), 143 (2005)
https://doi.org/10.1016/j.paerosci.2005.02.004
26 U. Meier, Strengthening of structures using carbon fibre/ epoxy composites, Constr. Build. Mater. 9(6), 341 (1995)
https://doi.org/10.1016/0950-0618(95)00071-2
27 C. Soutis, Carbon fiber reinforced plastics in aircraft construction, Mater. Sci. Eng. A 412(1–2), 171 (2005)
https://doi.org/10.1016/j.msea.2005.08.064
28 D. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing, Carbon 50(9), 3342 (2012)
https://doi.org/10.1016/j.carbon.2012.01.031
29 N. Song, X. Gao, Z. Ma, X. Wang, Y. Wei, and C. Gao, A review of graphene-based separation membrane: Materials, characteristics, preparation and applications, Desalination 437, 59 (2018)
https://doi.org/10.1016/j.desal.2018.02.024
30 A. D. Oyedele, C. M. Rouleau, D. B. Geohegan, and K. Xiao, The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures, Carbon 131, 246 (2018)
https://doi.org/10.1016/j.carbon.2018.02.020
31 J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287 (2015)
https://doi.org/10.1007/s11467-015-0459-z
32 F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, and Z. Zhou, Graphene-based microwave absorbing composites: A review and prospective, Compos. Part B Eng. 137, 260 (2018)
https://doi.org/10.1016/j.compositesb.2017.11.023
33 M. Ye, Z. Zhang, Y. Zhao, and L. Qu, Graphene platforms for smart energy generation and storage, Joule 2, 245 (2017)
https://doi.org/10.1016/j.joule.2017.11.011
34 A. Darbandi, E. Gottardo, J. Huff, M. Stroscio, and T. Shokuhfar, A review of the cell to graphene-based nanomaterial interface, JOM 70(4), 566 (2018)
https://doi.org/10.1007/s11837-018-2744-0
35 M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1), 132 (2010)
https://doi.org/10.1021/cr900070d
36 V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56(8), 1178 (2011)
https://doi.org/10.1016/j.pmatsci.2011.03.003
37 A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
https://doi.org/10.1038/nmat3064
38 F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
https://doi.org/10.1038/nnano.2010.89
39 F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, Graphene photonics and optoelectronics, Nature Photon. 4, 611 (2010)
https://doi.org/10.1038/nphoton.2010.186
40 A. K. Geim, Graphene: Status and prospects, Science 324, 1530 (2009)
https://doi.org/10.1126/science.1158877
41 Y. V. Pleskov, Electrochemistry of diamond: A review, Russ. J. Electrochem. 38(12), 1275 (2002)
https://doi.org/10.1023/A:1021651920042
42 O. Auciello and A. V. Sumant, Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices, Diamond Related Materials 19(7–9), 699 (2010)
43 J. P. Goss, Theory of hydrogen in diamond, J. Phys.: Condens. Matter 15(17), R551 (2003)
https://doi.org/10.1088/0953-8984/15/17/201
44 J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, Carbon 44(9), 1624 (2006)
https://doi.org/10.1016/j.carbon.2006.02.038
45 Q. Cao and J. A. Rogers, Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects, Adv. Mater. 21(1), 29 (2009)
https://doi.org/10.1002/adma.200801995
46 W. Bauhofer and J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol. 69(10), 1486 (2009)
https://doi.org/10.1016/j.compscitech.2008.06.018
47 J. Wang, Carbon-nanotube based electrochemical biosensors: A review, Electroanalysis 17(1), 7 (2005)
https://doi.org/10.1002/elan.200403113
48 O. Breuer and U. Sundararaj, Big returns from small fibers: A review of polymer/carbon nanotube composites, Polym. Compos. 25(6), 630 (2004)
https://doi.org/10.1002/pc.20058
49 J. M. Schulman and R. L. Disch, A theoretical study of large planar [n]phenylenes, J. Phys. Chem. A 111(39), 10010 (2007)
https://doi.org/10.1021/jp074454v
50 S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. U.S.A. 112(8), 2372 (2015)
https://doi.org/10.1073/pnas.1416591112
51 J. W. Jiang, J. Leng, J. Li, Z. Guo, T. Chang, X. Guo, and T. Zhang, Twin graphene: A novel two-dimensional semiconducting carbon allotrope, Carbon 118, 370 (2017)
https://doi.org/10.1016/j.carbon.2017.03.067
52 R. Baughman, H. Eckhardt, and M. Kertesz, Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J. Chem. Phys. 87(11), 6687 (1987)
https://doi.org/10.1063/1.453405
53 Z. Wang, X. F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, and A. R. Oganov, Phagraphene: A low-energy graphene allotrope composed of 5–6–7 carbon rings with distorted Dirac cones, Nano Lett. 15(9), 6182 (2015)
https://doi.org/10.1021/acs.nanolett.5b02512
54 F. Schlütter, T. Nishiuchi, V. Enkelmann, and K. Müllen, Octafunctionalized biphenylenes: Molecular precursors for isomeric graphene nanostructures, Angew. Chem. Int. Ed. 53(6), 1538 (2014)
https://doi.org/10.1002/anie.201309324
55 C. X. Zhao, C. Y. Niu, Z. J. Qin, X. Y. Ren, J. T. Wang, J. H. Cho, and Y. Jia, H18 carbon: A new metallic phase with sp2-sp3 hybridized bonding network, Sci. Rep. 6(1), 21879 (2016)
https://doi.org/10.1038/srep21879
56 Q. Song, B. Wang, K. Deng, X. Feng, M. Wagner, J. D. Gale, K. Müllen, and L. Zhi, Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units, J. Mater. Chem. C 1(1), 38 (2013)
https://doi.org/10.1039/C2TC00006G
57 A. T. Koch, A. H. Khoshaman, H. D. Fan, G. A. Sawatzky, and A. Nojeh, Graphenylene Nanotubes, J. Phys. Chem. Lett. 6(19), 3982 (2015)
https://doi.org/10.1021/acs.jpclett.5b01707
58 L. Zhu, Y. Jin, Q. Xue, X. Li, H. Zheng, T. Wu, and C. Ling, Theoretical study of a tunable and strain-controlled nanoporous graphenylene membrane for multifunctional gas separation, J. Mater. Chem. A 4(39), 15015 (2016)
https://doi.org/10.1039/C6TA04456E
59 W. Liu, M. Miao, and J. y. Liu, Band gap engineering of graphenylene by hydrogenation and halogenation: A density functional theory study,RSC Advances 5(87), 70766 (2015)
https://doi.org/10.1039/C5RA11208G
60 G. Fabris, N. Marana, E. Longo, and J. Sambrano, Theoretical study of porous surfaces derived from graphene and boron nitride, J. Solid State Chem. 258, 247 (2018)
https://doi.org/10.1016/j.jssc.2017.10.025
61 Y. Qu, F. Li, and M. Zhao, Efficient 3He/4He separation in a nanoporous graphenylene membrane, Phys. Chem. Chem. Phys. 19(32), 21522 (2017)
https://doi.org/10.1039/C7CP03422A
62 A. Balaban, C. C. Rentia, and E. Ciupitu, Estimation of relative stability of several planar and tridimensional lattices for elementary carbon, Rev. Roum. Chim. 13, 231 (1968)
63 Q. S. Du, P. D. Tang, H. L. Huang, F. L. Du, K. Huang, N. Z. Xie, S. Y. Long, Y. M. Li, J. S. Qiu, and R. B. Huang, A new type of two-dimensional carbon crystal prepared from 1, 3, 5-trihydroxybenzene, Sci. Rep. 7(1), 40796 (2017)
https://doi.org/10.1038/srep40796
64 R. Totani, C. Grazioli, T. Zhang, I. Bidermane, J. Lüder, M. de Simone, M. Coreno, B. Brena, L. Lozzi, and C. Puglia, Electronic structure investigation of biphenylene films, J. Chem. Phys. 146(5), 054705 (2017)
https://doi.org/10.1063/1.4975104
65 M. Bieri, M. Treier, J. Cai, K. Aït-Mansour, P. Ruffieux, O. Gröning, P. Gröning, M. Kastler, R. Rieger, X. Feng, K. Müllen, and R. Fasel, Porous graphenes: Twodimensional polymer synthesis with atomic precision, Chem. Commun. 45(45), 6919 (2009)
https://doi.org/10.1039/b915190g
66 Y. X. Yu, Graphenylene: A promising anode material for lithium-ion batteries with high mobility and storage, J. Mater. Chem. A 1(43), 13559 (2013)
https://doi.org/10.1039/c3ta12639k
67 S. Rouhi and A. Ghasemi, Investigation of the elastic properties of graphenylene using molecular dynamics simulations, Mater. Res. 20(1), 1 (2016)
https://doi.org/10.1590/1980-5373-mr-2015-0742
68 H. Lu and S. D. Li, Two-dimensional carbon allotropes from graphene to graphyne, J. Mater. Chem. C 1(23), 3677 (2013)
https://doi.org/10.1039/c3tc30302k
69 G. Brunetto, P. Autreto, L. Machado, B. Santos, R. P. Dos Santos, and D. S. Galvao, Nonzero gap twodimensional carbon allotrope from porous graphene, J. Phys. Chem. C 116(23), 12810 (2012)
https://doi.org/10.1021/jp211300n
70 M. De La Pierre, P. Karamanis, J. Baima, R. Orlando, C. Pouchan, and R. Dovesi, Ab Initioperiodic simulation of the spectroscopic and optical properties of novel porous graphene phases, J. Phys. Chem. C 117(5), 2222 (2013)
https://doi.org/10.1021/jp3103436
71 G. S. Fabris, C. E. Junkermeier, and R. Paupitz, Porous graphene and graphenylene nanotubes: Electronic structure and strain effects, Comput. Mater. Sci. 140, 344 (2017)
https://doi.org/10.1016/j.commatsci.2017.09.009
72 M. Hankel and D. J. Searles, Lithium storage on carbon nitride, graphenylene and inorganic graphenylene, Phys. Chem. Chem. Phys. 18(21), 14205 (2016)
https://doi.org/10.1039/C5CP07356A
73 O. Rahaman, B. Mortazavi, A. Dianat, G. Cuniberti, and T. Rabczuk, Metamorphosis in carbon network: From penta-graphene to biphenylene under uniaxial tension, FlatChem 1, 65 (2017)
https://doi.org/10.1016/j.flatc.2016.12.001
74 M. Q. Le, Mechanical properties of penta-graphene, hydrogenated penta-graphene, and penta-CN2 sheets, Comput. Mater. Sci. 136, 181 (2017)
https://doi.org/10.1016/j.commatsci.2017.05.004
75 C. P. Ewels, X. Rocquefelte, H. W. Kroto, M. J. Rayson, P. R. Briddon, and M. I. Heggie, Predicting experimentally stable allotropes: Instability of penta-graphene, Proc. Natl. Acad. Sci. USA 112(51), 15609 (2015)
https://doi.org/10.1073/pnas.1520402112
76 Z. Wang, F. Dong, B. Shen, R. Zhang, Y. Zheng, L. Chen, S. Wang, C. Wang, K. Ho, Y.-J. Fan, et al., Electronic and optical properties of novel carbon allotropes, Carbon 101, 77 (2016)
https://doi.org/10.1016/j.carbon.2016.01.078
77 H. Einollahzadeh, R. Dariani, and S. Fazeli, Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations, Solid State Commun. 229, 1 (2016)
https://doi.org/10.1016/j.ssc.2015.12.012
78 T. Stauber, J. Beltr’an, and J. Schliemann, Tight-binding approach to penta-graphene, Sci. Rep. 6(1), 22672 (2016)
https://doi.org/10.1038/srep22672
79 X. Li, S. Zhang, F. Q. Wang, Y. Guo, J. Liu, and Q. Wang, Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination, Phys. Chem. Chem. Phys. 18(21), 14191 (2016)
https://doi.org/10.1039/C6CP01092J
80 S. W. Cranford, When is 6 less than 5? Penta- to hexagraphene transition, Carbon 96, 421 (2016)
https://doi.org/10.1016/j.carbon.2015.09.092
81 H. Sun, S. Mukherjee, and C. V. Singh, Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study, Phys. Chem. Chem. Phys. 18(38), 26736 (2016)
https://doi.org/10.1039/C6CP04595B
82 Y. Zhang, Q. Pei, Z. Sha, Y. Zhang, and H. Gao, Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization, Nano Res. 10(11), 3865 (2017)
https://doi.org/10.1007/s12274-017-1600-9
83 S. Ebrahimi, Effect of hydrogen coverage on the buckling of penta-graphene by molecular dynamics simulation, Mol. Simul. 42(17), 1485 (2016)
https://doi.org/10.1080/08927022.2016.1205191
84 Z. G. Yu and Y. W. Zhang, A comparative density functional study on electrical properties of layered pentagraphene, J. Appl. Phys. 118(16), 165706 (2015)
https://doi.org/10.1063/1.4934855
85 G. Berdiyorov, G. Dixit, and M. Madjet, Band gap engineering in penta-graphene by substitutional doping: first-principles calculations, J. Phys.: Condens. Matter 28(47), 475001 (2016)
https://doi.org/10.1088/0953-8984/28/47/475001
86 J. Quijano-Briones, H. Fernández-Escamilla, and A. Tlahuice-Flores, Doped penta-graphene and hydrogenation of its related structures: a structural and electronic DFT-D study, Phys. Chem. Chem. Phys. 18(23), 15505 (2016)
https://doi.org/10.1039/C6CP02781D
87 G. R. Berdiyorov and M. E. A. Madjet, First-principles study of electronic transport and optical properties of penta-graphene, penta-SiC2 and penta-CN2, RSC Advances 6(56), 50867 (2016)
https://doi.org/10.1039/C6RA10376F
88 J. I. G. Enriquez and A. R. C. Villagracia, Hydrogen adsorption on pristine, defected, and 3d-block transition metal-doped penta-graphene, Int. J. Hydrogen Energy 41(28), 12157 (2016)
https://doi.org/10.1016/j.ijhydene.2016.06.035
89 H. Einollahzadeh, S. M. Fazeli, and R. S. Dariani, Studying the electronic and phononic structure of pentagraphane, Sci. Technol. Adv. Mater. 17(1), 610 (2016)
https://doi.org/10.1080/14686996.2016.1219970
90 B. Rajbanshi, S. Sarkar, B. Mandal, and P. Sarkar, Energetic and electronic structure of penta-graphene nanoribbons, Carbon 100, 118 (2016)
https://doi.org/10.1016/j.carbon.2016.01.014
91 P. Yuan, Z. Zhang, Z. Fan, and M. Qiu, Electronic structure and magnetic properties of penta-graphene nanoribbons, Phys. Chem. Chem. Phys. 19(14), 9528 (2017)
https://doi.org/10.1039/C7CP00029D
92 W. Xu, G. Zhang, and B. Li, Thermal conductivity of penta-graphene from molecular dynamics study, J. Chem. Phys. 143(15), 154703 (2015)
https://doi.org/10.1063/1.4933311
93 H. Liu, G. Qin, Y. Lin, and M. Hu, Disparate strain dependent thermal conductivity of two-dimensional pentastructures, Nano Lett. 16(6), 3831 (2016)
https://doi.org/10.1021/acs.nanolett.6b01311
94 F. Q. Wang, J. Yu, Q. Wang, Y. Kawazoe, and P. Jena, Lattice thermal conductivity of penta-graphene, Carbon 105, 424 (2016)
https://doi.org/10.1016/j.carbon.2016.04.054
95 X. Wu, V. Varshney, J. Lee, T. Zhang, J. L. Wohlwend, A. K. Roy, and T. Luo, Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity, Nano Lett. 16(6), 3925 (2016)
https://doi.org/10.1021/acs.nanolett.6b01536
96 F. Q. Wang, J. Liu, X. Li, Q. Wang, and Y. Kawazoe, Weak interlayer dependence of lattice thermal conductivity on stacking thickness of penta-graphene, Appl. Phys. Lett. 111(19), 192102 (2017)
https://doi.org/10.1063/1.4996054
97 Y. Y. Zhang, Q. X. Pei, Y. Cheng, Y. W. Zhang, and X. Zhang, Thermal conductivity of penta-graphene: The role of chemical functionalization, Comput. Mater. Sci. 137, 195 (2017)
https://doi.org/10.1016/j.commatsci.2017.05.042
98 R. Krishnan, W. S. Su, and H. T. Chen, A new carbon allotrope: Penta-graphene as a metal-free catalyst for CO oxidation, Carbon 114, 465 (2017)
https://doi.org/10.1016/j.carbon.2016.12.054
99 B. Xiao, Y.-C. Li, X.-F. Yu, and J.-B. Cheng, Pentagraphene: A promising anode material as the Li/Na-ion battery with both extremely high theoretical capacity and fast charge/discharge rate, ACS Appl. Mater. Interfaces 8, 35342 (2016)
https://doi.org/10.1021/acsami.6b12727
100 Q. Lu, M. Arroyo, and R. Huang, Elastic bending modulus of monolayer graphene, J. Phys. D Appl. Phys. 42(10), 102002 (2009)
https://doi.org/10.1088/0022-3727/42/10/102002
101 M. M. Haley, S. C. Brand, and J. J. Pak, Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. Engl. 36(8), 836 (1997)
https://doi.org/10.1002/anie.199708361
102 G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, and D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. (Camb.) 46(19), 3256 (2010)
https://doi.org/10.1039/b922733d
103 Y. Q. Zhang, N. Kepčija, M. Kleinschrodt, K. Diller, S. Fischer, A. C. Papageorgiou, F. Allegretti, J. Björk, S. Klyatskaya, F. Klappenberger, M. Ruben, and J. V. Barth, Homo-coupling of terminal alkynes on a noble metal surface, Nat. Commun. 3(1), 1286 (2012)
https://doi.org/10.1038/ncomms2291
104 A. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem. 41(1–2), 1 (2013)
105 Q. Peng, J. Crean, L. Han, S. Liu, X. Wen, S. De, and A. Dearden, New materials graphyne, graphdiyne, graphone, and graphane: Review of properties, synthesis, and application in nanotechnology, Nanotechnol. Sci. Appl. 7, 1 (2014)
https://doi.org/10.2147/NSA.S40324
106 Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
https://doi.org/10.1039/c3cs60388a
107 Z. Chen, C. Molina-Jirón, S. Klyatskaya, F. Klappenberger, and M. Ruben, 1D and 2D graphdiynes: Recent advances on the synthesis at interfaces and potential nanotechnological applications, Ann. Phys. 529(11), 1700056 (2017)
https://doi.org/10.1002/andp.201700056
108 F. Chang, L. Huang, Y. Li, C. Guo, and Q. Diao, A short review of synthesis of graphdiyne and its potential applications, Int. J. Electrochem. Sci. 12, 10348 (2017)
https://doi.org/10.20964/2017.11.70
109 X. Zhang, M. Zhu, P. Chen, Y. Li, H. Liu, Y. Li, and M. Liu, Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent, Phys. Chem. Chem. Phys. 17(2), 1217 (2015)
https://doi.org/10.1039/C4CP04683H
110 H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, and L. Mao, Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity, J. Am. Chem. Soc. 137(16), 5260 (2015)
https://doi.org/10.1021/ja5131337
111 L. Sun, P. Jiang, H. Liu, D. Fan, J. Liang, J. Wei, L. Cheng, J. Zhang, and J. Shi, Graphdiyne: A twodimensional thermoelectric material with high figure of merit, Carbon 90, 255 (2015)
https://doi.org/10.1016/j.carbon.2015.04.037
112 N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Optimized geometries and electronic structures of graphyne and its family, Phys. Rev. B 58(16), 11009 (1998)
https://doi.org/10.1103/PhysRevB.58.11009
113 H. Bai, Y. Zhu, W. Qiao, and Y. Huang, Structures, stabilities and electronic properties of graphdiyne nanoribbons, RSC Advances 1(5), 768 (2011)
https://doi.org/10.1039/c1ra00481f
114 S. W. Cranford and M. J. Buehler, Mechanical properties of graphyne, Carbon 49(13), 4111 (2011)
https://doi.org/10.1016/j.carbon.2011.05.024
115 Y. Yang and X. Xu, Mechanical properties of graphyne and its family – A molecular dynamics investigation, Comput. Mater. Sci. 61, 83 (2012)
https://doi.org/10.1016/j.commatsci.2012.03.052
116 Q. Peng, W. Ji, and S. De, Mechanical properties of graphyne monolayers: a first-principles study, Phys. Chem. Chem. Phys. 14(38), 13385 (2012)
https://doi.org/10.1039/c2cp42387a
117 S. Ajori, R. Ansari, and M. Mirnezhad, Mechanical properties of defective g-graphyne using molecular dynamics simulations, Mater. Sci. Eng. A 561, 34 (2013)
https://doi.org/10.1016/j.msea.2012.10.094
118 S. Ma, M. Zhang, L. Sun, and K. Zhang, Hightemperature behavior of monolayer graphyne and graphdiyne, Carbon 99, 547 (2016)
https://doi.org/10.1016/j.carbon.2015.12.086
119 Q. Yue, S. Chang, J. Kang, S. Qin, and J. Li, Mechanical and electronic properties of graphyne and its family under elastic strain: Theoretical predictions, J. Phys. Chem. C 117(28), 14804 (2013)
https://doi.org/10.1021/jp4021189
120 S. W. Cranford, D. B. Brommer, and M. J. Buehler, Extended graphynes: simple scaling laws for stiffness, strength and fracture, Nanoscale 4(24), 7797 (2012)
https://doi.org/10.1039/c2nr31644g
121 Y. Y. Zhang, Q. X. Pei, and C. M. Wang, Mechanical properties of graphynes under tension: A molecular dynamics study, Appl. Phys. Lett. 101, 666 (2012)
https://doi.org/10.1063/1.4747719
122 Y. Pei, Mechanical properties of graphdiyne sheet, Physica B 407(22), 4436 (2012)
https://doi.org/10.1016/j.physb.2012.07.026
123 M. M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem. 80(3), 519 (2008)
https://doi.org/10.1351/pac200880030519
124 G. Luo, X. Qian, H. Liu, R. Qin, J. Zhou, L. Li, Z. Gao, E. Wang, W. N. Mei, J. Lu, Y. Li, and S. Nagase, Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment, Phys. Rev. B 84(7), 075439 (2011)
https://doi.org/10.1103/PhysRevB.84.075439
125 Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, and S. C. Smith, Graphdiyne: A versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(43), 11843 (2011)
https://doi.org/10.1039/c1cc15129k
126 G. M. Psofogiannakis and G. E. Froudakis, Computational prediction of new hydrocarbon materials: The hydrogenated forms of graphdiyne, J. Phys. Chem. C 116(36), 19211 (2012)
https://doi.org/10.1021/jp306704b
127 M. Long, L. Tang, D. Wang, Y. Li, and Z. Shuai, Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions, ACS Nano 5(4), 2593 (2011)
https://doi.org/10.1021/nn102472s
128 S. Jalili, F. Houshmand, and J. Schofield, Study of carrier mobility of tubular and planar graphdiyne, Appl. Phys. A 119(2), 571 (2015)
https://doi.org/10.1007/s00339-015-8992-8
129 J. Xi, M. Long, L. Tang, D. Wang, and Z. Shuai, Firstprinciples prediction of charge mobility in carbon and organic nanomaterials, Nanoscale 4(15), 4348 (2012)
https://doi.org/10.1039/c2nr30585b
130 H. J. Cui, X. L. Sheng, Q. B. Yan, Q. R. Zheng, and G. Su, Strain-induced Dirac cone-like electronic structures and semiconductor–semimetal transition in graphdiyne, Phys. Chem. Chem. Phys. 15(21), 8179 (2013)
https://doi.org/10.1039/c3cp44457k
131 K. Krishnamoorthy, S. Thangavel, J. C. Veetil, N. Raju, G. Venugopal, and S. J. Kim, Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors, International Journal of Hydrogen Energy 41, 1672 (2016)
https://doi.org/10.1016/j.ijhydene.2015.10.118
132 K. Srinivasu and S. K. Ghosh, Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications, J. Phys. Chem. C 116(9), 5951 (2012)
https://doi.org/10.1021/jp212181h
133 C. Sun and D. J. Searles, Lithium storage on graphdiyne predicted by DFT calculations, J. Phys. Chem. C 116(50), 26222 (2012)
https://doi.org/10.1021/jp309638z
134 H. Zhang, Y. Xia, H. Bu, X. Wang, M. Zhang, Y. Luo, and M. Zhao, Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability, J. Appl. Phys. 113(4), 044309 (2013)
https://doi.org/10.1063/1.4789635
135 B. Jang, J. Koo, M. Park, H. Lee, J. Nam, Y. Kwon, and H. Lee, Graphdiyne as a high-capacity lithium ion battery anode material, Appl. Phys. Lett. 103(26), 263904 (2013)
https://doi.org/10.1063/1.4850236
136 S. Zhang, H. Du, J. He, C. Huang, H. Liu, G. Cui, and Y. Li, Nitrogen-doped graphdiyne applied for lithium-ion storage, ACS Appl. Mater. Interfaces 8, 8467 (2016)
https://doi.org/10.1021/acsami.6b00255
137 H. Du, H. Yang, C. Huang, J. He, H. Liu, and Y. Li, Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities, Nano Energy 22, 615 (2016)
https://doi.org/10.1016/j.nanoen.2016.02.052
138 S. Zhang, H. Liu, C. Huang, G. Cui, and Y. Li, Bulk graphdiyne powder applied for highly efficient lithium storage, Chem. Commun. 51(10), 1834 (2015)
https://doi.org/10.1039/C4CC08706B
139 C. Huang, S. Zhang, H. Liu, Y. Li, G. Cui, and Y. Li, Graphdiyne for high capacity and long-life lithium storage, Nano Energy 11, 481 (2015)
https://doi.org/10.1016/j.nanoen.2014.11.036
140 H. Yu, A. Du, Y. Song, and D. J. Searles, Graphyne and graphdiyne: Versatile catalysts for dehydrogenation of light metal complex hydrides, J. Phys. Chem. C 117(42), 21643 (2013)
https://doi.org/10.1021/jp406081v
141 R. Liu, H. Liu, Y. Li, Y. Yi, X. Shang, S. Zhang, X. Yu, S. Zhang, H. Cao, and G. Zhang, Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions, Nanoscale 6(19), 11336 (2014)
https://doi.org/10.1039/C4NR03185G
142 J. Li, X. Gao, B. Liu, Q. Feng, X. B. Li, M. Y. Huang, Z. Liu, J. Zhang, C. H. Tung, and L. Z. Wu, Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production, J. Am. Chem. Soc. 138(12), 3954 (2016)
https://doi.org/10.1021/jacs.5b12758
143 S. W. Cranford and M. J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(15), 4587 (2012)
https://doi.org/10.1039/c2nr30921a
144 L. F. C. Pereira, B. Mortazavi, M. Makaremi, and T. Rabczuk, Anisotropic thermal conductivity and mechanical properties of phagraphene: A molecular dynamics study, RSC Advances 6(63), 57773 (2016)
https://doi.org/10.1039/C6RA05082D
145 D. Wu, S. Wang, J. Yuan, B. Yang, and H. Chen, Modulation of the electronic and mechanical properties of phagraphene via hydrogenation and fluorination, Phys. Chem. Chem. Phys. 19(19), 11771 (2017)
https://doi.org/10.1039/C6CP08621G
146 A. Lopez-Bezanilla, Strain-mediated modification of phagraphene Dirac cones, J. Phys. Chem. C 120(30), 17101 (2016)
https://doi.org/10.1021/acs.jpcc.6b05593
147 A. Luo, R. Hu, Z. Fan, H. Zhang, J. Yuan, C. Yang, and Z. Zhang, Electronic structure, carrier mobility and device properties for mixed-edge phagraphene nanoribbon by hetero-atom doping, Org. Electron. 51, 277 (2017)
https://doi.org/10.1016/j.orgel.2017.09.025
148 Y. Liu, Z. Chen, L. Tong, J. Zhang, and D. Sun, Effect of edge-hydrogen passivation and nanometer size on the electronic properties of phagraphene ribbons, Comput. Mater. Sci. 117, 279 (2016)
https://doi.org/10.1016/j.commatsci.2016.02.010
149 P. Yuan, Z. Fan, and Z. Zhang, Magneto-electronic properties and carrier mobility in phagraphene nanoribbons: A theoretical prediction, Carbon 124, 228 (2017)
https://doi.org/10.1016/j.carbon.2017.08.068
150 D. Ferguson, D. J. Searles, and M. Hankel, Biphenylene and phagraphene as lithium ion battery anode materials, ACS Appl. Mater. Interfaces 9, 20577 (2017)
https://doi.org/10.1021/acsami.7b04170
151 W. C. Lothrop, Biphenylene, J. Am. Chem. Soc. 63(5), 1187 (1941)
https://doi.org/10.1021/ja01850a007
152 N. Yedla, P. Gupta, T. Y. Ng, and K. Geethalakshmi, Effect of loading direction and defects on the strength and fracture behavior of biphenylene based graphene monolayer, Mater. Chem. Phys. 202, 127 (2017)
https://doi.org/10.1016/j.matchemphys.2017.09.016
153 M. A. Hudspeth, B. W. Whitman, V. Barone, and J. E. Peralta, Electronic properties of the biphenylene sheet and its one-dimensional derivatives, ACS Nano 4(8), 4565 (2010)
https://doi.org/10.1021/nn100758h
154 P. A. Denis, Stability and electronic properties of biphenylene based functionalized nanoribbons and sheets, J. Phys. Chem. C 118(43), 24976 (2014)
https://doi.org/10.1021/jp5069895
155 S. Wang, Optical response and excitonic effects in graphene nanoribbons derived from biphenylene, Mater. Lett. 167, 258 (2016)
https://doi.org/10.1016/j.matlet.2016.01.017
156 P. A. Denis and F. Iribarne, Hydrogen storage in doped biphenylene based sheets, Comput. Theor. Chem. 1062, 30 (2015)
https://doi.org/10.1016/j.comptc.2015.03.012
157 J. Liu, T. Zhao, S. Zhang, and Q. Wang, A new metallic carbon allotrope with high stability and potential for lithium ion battery anode material, Nano Energy 38, 263 (2017)
https://doi.org/10.1016/j.nanoen.2017.05.017
158 Y. Cheng, R. Melnik, Y. Kawazoe, and B. Wen, Three dimensional metallic carbon from distorting sp3-bond, Crystal Growth and Design 16, 1360 (2016)
https://doi.org/10.1021/acs.cgd.5b01490
159 Y. Liu, X. Jiang, J. Fu, and J. Zhao, New metallic carbon: Three dimensionally carbon allotropes comprising ultrathin diamond nanostripes, Carbon 126, 601 (2018)
https://doi.org/10.1016/j.carbon.2017.10.066
160 X. L. Sheng, Q. B. Yan, F. Ye, Q. R. Zheng, and G. Su, T-carbon: A novel carbon allotrope, Phys. Rev. Lett. 106(15), 155703 (2011)
https://doi.org/10.1103/PhysRevLett.106.155703
161 X. Wu, X. Shi, M. Yao, S. Liu, X. Yang, L. Zhu, T. Cui, and B. Liu, Superhard three-dimensional carbon with metallic conductivity, Carbon 123, 311 (2017)
https://doi.org/10.1016/j.carbon.2017.07.034
162 Q. Wei, Q. Zhang, H. Yan, and M. Zhang, A new superhard carbon allotrope: Tetragonal C64, J. Mater. Sci. 52(5), 2385 (2017)
https://doi.org/10.1007/s10853-016-0564-6
163 J. Q. Wang, C. X. Zhao, C. Y. Niu, Q. Sun, and Y. Jia, C20 T-carbon: A novel superhard sp3 carbon allotrope with large cavities, J. Phys.: Condens. Matter 28(47), 475402 (2016)
https://doi.org/10.1088/0953-8984/28/47/475402
164 D. Pantea, S. Brochu, S. Thiboutot, G. Ampleman, and G. Scholz, A morphological investigation of soot produced by the detonation of munitions, Chemosphere 65(5), 821 (2006)
https://doi.org/10.1016/j.chemosphere.2006.03.027
165 F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)
https://doi.org/10.1103/PhysRevB.90.224104
166 P. Chen, F. Huang, and S. Yun, Characterization of the condensed carbon in detonation soot, Carbon 41(11), 2093 (2003)
https://doi.org/10.1016/S0008-6223(03)00229-X
167 X. Q. Chen, H. Niu, D. Li, and Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19(9), 1275 (2011)
https://doi.org/10.1016/j.intermet.2011.03.026
168 F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian, Hardness of covalent crystals, Phys. Rev. Lett. 91(1), 015502 (2003)
https://doi.org/10.1103/PhysRevLett.91.015502
169 L. C. Xu, X. J. Song, R. Z. Wang, Z. Yang, X. Y. Li, and H. Yan, Designing electronic anisotropy of threedimensional carbon allotropes for the all-carbon device, Appl. Phys. Lett. 107(2), 021905 (2015)
https://doi.org/10.1063/1.4926983
170 J. Zhang, R. Wang, X. Zhu, A. Pan, C. Han, X. Li, Z. Dan, C. Ma, W. Wang, and H. Su, Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol, Nat. Commun. 8(1), 683(2017)
https://doi.org/10.1038/s41467-017-00817-9
171 X. Q. Chen, H. Niu, C. Franchini, D. Li, and Y. Li, Hardness of T-carbon: Density functional theory calculations, Phys. Rev. B 84(12), 121405 (2011)
https://doi.org/10.1103/PhysRevB.84.121405
172 S. Y. Yue, G. Qin, X. Zhang, X. Sheng, G. Su, and M. Hu, Thermal transport in novel carbon allotropes with sp2 or sp3 hybridization: An ab initiostudy, Phys. Rev. B 95(8), 085207 (2017)
https://doi.org/10.1103/PhysRevB.95.085207
173 Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76(5), 054115 (2007)
https://doi.org/10.1103/PhysRevB.76.054115
174 A. O. Lyakhov and A. R. Oganov, Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2, Phys. Rev. B 84(9), 092130 (2011)
https://doi.org/10.1103/PhysRevB.84.092103
175 S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823 (1954)
https://doi.org/10.1080/14786440808520496
176 Y. Li, L. Xu, H. Liu, and Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev. 43(8), 2572 (2014)
https://doi.org/10.1039/c3cs60388a
177 J. Kang, J. Li, F. Wu, S. S. Li, and J. B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet,J. Phys. Chem. C 115(42), 20466 (2011)
https://doi.org/10.1021/jp206751m
178 R. C. Andrew, R. E. Mapasha, A. M. Ukpong, and N. Chetty, Mechanical properties of graphene and boronitrene, Phys. Rev. B 85(12), 125428 (2012)
https://doi.org/10.1103/PhysRevB.85.125428
179 J. Zhou, K. Lv, Q. Wang, X. Chen, Q. Sun, and P. Jena, Electronic structures and bonding of graphyne sheet and its BN analog, J. Chem. Phys. 134(17), 174701 (2011)
https://doi.org/10.1063/1.3583476
180 H. Bu, M. Zhao, H. Zhang, X. Wang, Y. Xi, and Z. Wang, Isoelectronic doping of graphdiyne with boron and nitrogen: Stable configurations and band gap modification, J. Phys. Chem. A 116(15), 3934 (2012)
https://doi.org/10.1021/jp300107d
181 C. Feng, X. H. Luan, P. Zhang, J. Xiao, D. G. Yang, and H. B. Qin, in: Electronic Packaging Technology (ICEPT), 2017, 18th International Conference on (IEEE, 2017), pp 1138–1142
182 Z. Xu, X. Lv, J. Li, J. Chen, and Q. Liu, A promising anode material for sodium-ion battery with high capacity and high diffusion ability: Graphyne and graphdiyne, RSC Advances 6(30), 25594 (2016)
https://doi.org/10.1039/C6RA01870J
183 Y. Pan, C. Xie, M. Xiong, M. Ma, L. Liu, Z. Li, S. Zhang, G. Gao, Z. Zhao, Y. Tian, B. Xu, and J. He, A superhard sp3 microporous carbon with direct bandgap, Chem. Phys. Lett. 689, 68 (2017)
https://doi.org/10.1016/j.cplett.2017.10.014
184 R. L. Austman, J. S. Milner, D. W. Holdsworth, and C. E. Dunning, The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone, J. Biomech. 41(15), 3171 (2008)
https://doi.org/10.1016/j.jbiomech.2008.08.017
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed