Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (1): 13401   https://doi.org/10.1007/s11467-018-0836-5
  本期目录 |  
The art of designing carbon allotropes
Run-Sen Zhang, Jin-Wu Jiang()
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
 全文: PDF(7542 KB)  
Abstract

Stimulated by the success of graphene and diamond, a variety of carbon allotropes have been discovered in recent years in either two-dimensional or three-dimensional configurations. Although these emerging carbon allotropes share some common features, they have certain different and novel mechanical or physical properties. In this review, we present a comparative survey of some of the major properties of fifteen newly discovered carbon allotropes. By comparing their structural topology, we propose a general route for designing most carbon allotropes from two mother structures, namely, graphene and diamond. Furthermore, we discuss several future prospects as well as current challenges in designing new carbon allotropes.

Key wordscarbon allotropes    mechanical properties
收稿日期: 2018-05-15      出版日期: 2019-01-01
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(1): 13401.
Run-Sen Zhang, Jin-Wu Jiang. The art of designing carbon allotropes. Front. Phys. , 2019, 14(1): 13401.
 链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0836-5
http://academic.hep.com.cn/fop/CN/Y2019/V14/I1/13401
1 R. Hoffmann, A. A. Kabanov, A. A. Golov, and D. M. Proserpio, Homo Citans and carbon allotropes: For an ethics of citation, Angew. Chem. Int. Ed. 55(37), 10962 (2016)
https://doi.org/10.1002/anie.201600655
2 A. E. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. Scott, and A. P. Turner, Ferrocene-mediated enzyme electrode for amperometric determination of glucose, Anal. Chem. 56(4), 667 (1984)
https://doi.org/10.1021/ac00268a018
3 D. Aurbach, B. Markovsky, I. Weissman, E. Levi, and Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries, Electrochim. Acta 45(1–2), 67 (1999)
https://doi.org/10.1016/S0013-4686(99)00194-2
4 J. F. Rusling and A. E. F. Nassar, Enhanced electron transfer for myoglobin in surfactant films on electrodes, J. Am. Chem. Soc. 115(25), 11891 (1993)
https://doi.org/10.1021/ja00078a030
5 D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli, and H. Cohen, A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures, J. Electrochem. Soc. 143(12), 3809 (1996)
https://doi.org/10.1149/1.1837300
6 M. Lichinchi, C. Lenardi, J. Haupt, and R. Vitali, Simulation of Berkovich nanoindentation experiments on thin films using finite element method, Thin Solid Films 312(1–2), 240 (1998)
https://doi.org/10.1016/S0040-6090(97)00739-6
7 R. Saha, Z. Xue, Y. Huang, and W. D. Nix, Indentation of a soft metal film on a hard substrate: Strain gradient hardening effects, J. Mech. Phys. Solids 49(9), 1997 (2001)
https://doi.org/10.1016/S0022-5096(01)00035-7
8 J. Cao, Y. Wu, D. Lu, M. Fujimoto, and M. Nomura, Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool, Int. J. Mach. Tools Manuf. 79, 49 (2014)
https://doi.org/10.1016/j.ijmachtools.2014.02.002
9 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
10 H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318(6042), 162 (1985)
https://doi.org/10.1038/318162a0
11 F. Diederich and M. Kivala, All-carbon scaffolds by rational design, Adv. Mater. 22(7), 803 (2010)
https://doi.org/10.1002/adma.200902623
12 C. Hug and S. W. Cranford, Sparse fulleryne structures enhance potential hydrogen storage and mobility, J. Mater. Chem. A 5, 21223 (2017)
https://doi.org/10.1039/C7TA05387H
13 J. Cremers, R. Haver, M. Rickhaus, J. Q. Gong, L. Favereau, M. D. Peeks, T. Claridge, L. M. Herz, and H. L. Anderson, Template-directed synthesis of a conjugated zinc porphyrin nanoball, J. Am. Chem. Soc. 140(16), 5352 (2018)
https://doi.org/10.1021/jacs.8b02552
14 E. Estrada and Y. Sim’on-Manso, Escherynes: Novel carbon allotropes with belt shapes, Chem. Phys. Lett. 548, 80 (2012)
https://doi.org/10.1016/j.cplett.2012.07.063
15 A. Kochaev, A. Karenin, R. Meftakhutdinov, and R. Brazhe, 2D supracrystals as a promising materials for planar nanoacoustoelectronics, J. Phys.: Conf. Ser. 345, 012007 (2012)
https://doi.org/10.1088/1742-6596/345/1/012007
16 E. Belenkov and I. Shakhova, Structure of carbinoid nanotubes and carbinofullerenes, Phys. Solid State 53(11), 2385 (2011)
https://doi.org/10.1134/S1063783411110059
17 A. N. Enyashin and A. L. Ivanovskii, Graphene allotropes,physica status solidi (b) 248, 1879 (2011)
18 J. B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res. 46(5), 1053 (2013)
https://doi.org/10.1021/ar2002705
19 Z. Ogumi and H. Wang, Carbon Anode Materials, Springer, 2009
20 D. H. Doughty, Materials issues in lithium ion rechargeable battery technology, Sampe Journal 32, 75 (1995)
21 K. McElhaney, J. Vlassak, and W. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res. 13(05), 1300 (1998)
https://doi.org/10.1557/JMR.1998.0185
22 A. Richter, R. Ries, R. Smith, M. Henkel, and B. Wolf, Nanoindentation of diamond, graphite and fullerene films, Diamond Related Materials 9(2), 170 (2000)
https://doi.org/10.1016/S0925-9635(00)00188-6
23 W. Ni, Y. T. Cheng, and D. S. Grummon, Microscopic superelastic behavior of a nickel-titanium alloy under complex loading conditions, Appl. Phys. Lett. 82(17), 2811 (2003)
https://doi.org/10.1063/1.1569984
24 D. J. Sprouster, S. Ruffell, J. E. Bradby, J. S. Williams, M. N. Lockrey, M. R. Phillips, R. C. Major, and O. L. Warren, Structural characterization of B-doped diamond nanoindentation tips, J. Mater. Res. 26(24), 3051 (2011)
https://doi.org/10.1557/jmr.2011.377
25 C. Soutis, Fibre reinforced composites in aircraft construction, Prog. Aerosp. Sci. 41(2), 143 (2005)
https://doi.org/10.1016/j.paerosci.2005.02.004
26 U. Meier, Strengthening of structures using carbon fibre/ epoxy composites, Constr. Build. Mater. 9(6), 341 (1995)
https://doi.org/10.1016/0950-0618(95)00071-2
27 C. Soutis, Carbon fiber reinforced plastics in aircraft construction, Mater. Sci. Eng. A 412(1–2), 171 (2005)
https://doi.org/10.1016/j.msea.2005.08.064
28 D. Chung, Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing, Carbon 50(9), 3342 (2012)
https://doi.org/10.1016/j.carbon.2012.01.031
29 N. Song, X. Gao, Z. Ma, X. Wang, Y. Wei, and C. Gao, A review of graphene-based separation membrane: Materials, characteristics, preparation and applications, Desalination 437, 59 (2018)
https://doi.org/10.1016/j.desal.2018.02.024
30 A. D. Oyedele, C. M. Rouleau, D. B. Geohegan, and K. Xiao, The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures, Carbon 131, 246 (2018)
https://doi.org/10.1016/j.carbon.2018.02.020
31 J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287 (2015)
https://doi.org/10.1007/s11467-015-0459-z
32 F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, and Z. Zhou, Graphene-based microwave absorbing composites: A review and prospective,