Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (6): 132109   https://doi.org/10.1007/s11467-018-0842-7
  本期目录
Nuclear magnetic moments in covariant density functional theory
Jian Li (李剑)1,2, J. Meng (孟杰)3,4,5()
1. College of Physics, Jilin University, Changchun 130012, China
2. Department of Physics, Western Michigan University, Kalamazoo, MI 49008, USA
3. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
4. Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
5. Department of Physics, University of Stellenbosch, Stellenbosch, South Africa
 全文: PDF(1247 KB)  
Abstract

Nuclear magnetic moment is an important physical variable and serves as a useful tool for the stringent test of nuclear models. For the past decades, the covariant density functional theory and its extension have been proved to be successful in describing the nuclear ground-states and excited states properties. However, a long-standing problem is its failure to predict magnetic moments. This article reviews the recent progress in the description of the nuclear magnetic moments within the covariant density functional theory. In particular, the magnetic moments of spherical odd-Anuclei with doubly closed shell core plus or minus one nucleon and deformed odd-Anuclei.

Key wordsnuclear magnetic moment    covariant density functional theory    meson exchange current    configuration mixing
收稿日期: 2018-07-17      出版日期: 2018-12-13
Corresponding Author(s): J. Meng (孟杰)   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(6): 132109.
Jian Li (李剑), J. Meng (孟杰). Nuclear magnetic moments in covariant density functional theory. Front. Phys. , 2018, 13(6): 132109.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0842-7
https://academic.hep.com.cn/fop/CN/Y2018/V13/I6/132109
1 A. Arima, M. Harvey, and K. Shimizu, Pseudo LScoupling and pseudo SU3 coupling schemes, Phys. Lett. B 30(8), 517 (1969)
https://doi.org/10.1016/0370-2693(69)90443-2
2 J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, and A. Arima, Pseudospin symmetry in relativistic mean field theory, Phys. Rev. C 58(2), R628 (1998)
https://doi.org/10.1103/PhysRevC.58.R628
3 J. Meng, K. Sugawara-Tanabe, S. Yamaji, and A. Arima, Pseudospin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line, Phys. Rev. C 59(1), 154 (1999)
https://doi.org/10.1103/PhysRevC.59.154
4 H. Liang, J. Meng, and S.-G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei, Phys. Rep. 570, 1 (2015)
https://doi.org/10.1016/j.physrep.2014.12.005
5 A. Arima, K. Shimizu, W. Bentz, and H. Hyuga, Nuclear magnetic properties and gamow-teller transitions, Adv. Nucl. Phys. 18, 1 (1987)
6 A. Arima and H. Horie, Configuration mixing and magnetic moments of nuclei, Prog. Theor. Phys. 11(4), 509 (1954)
https://doi.org/10.1143/PTP.11.509
7 H. Horie and A. Arima, Configuration mixing and quadrupole moments of odd nuclei, Phys. Rev. 99(3), 778 (1955)
https://doi.org/10.1103/PhysRev.99.778
8 K. Shimizu, M. Ichimura, and A. Arima, Magnetic moments and GT-type β-decay matrix elements in nuclei with a LSdoubly closed shell plus or minus one nucleon, Nucl. Phys. A 226(2), 282 (1974)
https://doi.org/10.1016/0375-9474(74)90407-2
9 J. Li, J. M. Yao, J. Meng, and A. Arima, One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory, Prog. Theor. Phys. 125(6), 1185 (2011)
https://doi.org/10.1143/PTP.125.1185
10 J. Li, J. Meng, P. Ring, J. M. Yao, and A. Arima, Relativistic description of second-order correction to nuclear magnetic moments with point-coupling residual interaction, Sci. China Phys. Mech. Astron. 54(2), 204 (2011)
https://doi.org/10.1007/s11433-010-4215-7
11 J. Li, Y. Zhang, J. M. Yao, and J. Meng, Magnetic moments of 33Mg in the time-odd relativistic mean field approach, Sci. China Ser. G 52(10), 1586 (2009)
https://doi.org/10.1007/s11433-009-0194-y
12 J. Wei, J. Li, and J. Meng, Relativistic descriptions of nuclear magnetic moments, Prog. Theor. Phys. Supp. 196, 400 (2012)
https://doi.org/10.1143/PTPS.196.400
13 J. Li, J. X. Wei, J. N. Hu, P. Ring, and J. Meng, Relativistic description of magnetic moments in nuclei with doubly closed shells plus or minus one nucleon, Phys. Rev. C 88(6), 064307 (2013)
https://doi.org/10.1103/PhysRevC.88.064307
14 R. J. Blin-Stoyle, Theories of nuclear moments, Rev. Mod. Phys. 28(1), 75 (1956)
https://doi.org/10.1103/RevModPhys.28.75
15 A. Arima, Nuclear magnetic moments and gamow-teller matrix elements — configuration mixing vs. mesonic effects, Prog. Part. Nucl. Phys. 1, 41 (1978)
https://doi.org/10.1016/0146-6410(78)90005-4
16 A. Arima, Nuclear magnetic properties and gamowteller transitions, Prog. Part. Nucl. Phys. 11, 53 (1984)
https://doi.org/10.1016/0146-6410(84)90012-7
17 I. S. Towner, Quenching of spin matrix elements in nuclei, Phys. Rep. 155(5), 263 (1987)
https://doi.org/10.1016/0370-1573(87)90138-4
18 B. Castel and I. S. Towner, Modern Theories of Nuclear Moments, Oxford University Press, USA, 1990
19 I. Talmi, 55 years of the shell model: A challenge to nuclear many-body theory, Int. J. Mod. Phys. E 14(06), 821 (2005)
https://doi.org/10.1142/S0218301305003570
20 T. Schmidt, Über die magnetischen Momente der Atomkerne, Z. Phys. A 106(5–6), 358 (1937)
https://doi.org/10.1007/BF01338744
21 R. J. Blin-Stoyle, The magnetic moments of spin 1/2 Nuclei, Proc. Phys. Soc. A 66(12), 1158 (1953)
https://doi.org/10.1088/0370-1298/66/12/312
22 R. J. Blin-Stoyle and M. A. Perks, The deviations of nuclear magnetic moments from the schmidt lines, Proc. Phys. Soc. A 67(10), 885 (1954)
https://doi.org/10.1088/0370-1298/67/10/305
23 A. Arima and H. Horie, Configuration mixing and magnetic moments of odd nuclei, Prog. Theor. Phys. 12(4), 623 (1954)
24 H. Noya, A. Arima, and H. Horie, Nuclear moments and configuration mixing, Prog. Theor. Phys. Suppl. 8, 33 (1958)
https://doi.org/10.1143/PTPS.8.33
25 H. Miyazawa, Deviations of nuclear magnetic moments from the Schmidt lines, Prog. Theor. Phys. 6(5), 801 (1951)
https://doi.org/10.1143/ptp/6.5.801
26 F. Villars, Exchange current effects in the Deuteron, Phys. Rev. 86(4), 476 (1952)
https://doi.org/10.1103/PhysRev.86.476
27 M. Chemtob, Two-body interaction currents and nuclear magnetic moments, Nucl. Phys. A 123(2), 449 (1969)
https://doi.org/10.1016/0375-9474(69)90513-2
28 H. Hyuga, A. Arima, and K. Shimizu, Exchange magnetic moments, Nucl. Phys. A 336(3), 363 (1980)
https://doi.org/10.1016/0375-9474(80)90216-X
29 M. Ichimura, The magnetic moments of nuclei with a closed shell plus or minus one nucleon, Nucl. Phys. 63(3), 401 (1965)
https://doi.org/10.1016/0029-5582(65)90472-4
30 H. Mavromatis, First and second order corrections to the magnetic moments of nuclei using realistic interactions, Nucl. Phys. 80(3), 545 (1966)
https://doi.org/10.1016/0029-5582(66)90063-0
31 H. Mavromatis, Magnetic moments of nuclei with closed jjshells plus or minus one nucleon, Nucl. Phys. A 104(1), 17 (1967)
https://doi.org/10.1016/0375-9474(67)90754-3
32 I. S. Towner and F. C. Khanna, Corrections to the single-particle M1 and gamow-teller matrix elements, Nucl. Phys. A 399(2), 334 (1983)
https://doi.org/10.1016/0375-9474(83)90252-X
33 A. Arima, A short history of nuclear magnetic moments and GT transitions, Sci. China Phys. Mech. Astron. 54(2), 188 (2011)
https://doi.org/10.1007/s11433-010-4224-6
34 N. J. Stone, D. Doran, M. Lindroos, J. Rikovska, M. Veskovic, et al., Magnetic moments of odd-ASb isotopes to 133Sb: Significant evidence for mesonic exchange current contributions and on core collective gfactors, Phys. Rev. Lett. 78(5), 820 (1997)
https://doi.org/10.1103/PhysRevLett.78.820
35 J. Rikovska, T. Giles, N. J. Stone, K. van Esbroeck, G. White, et al., First on-line beta-nMR on oriented nuclei: Magnetic dipole moments of the (νp1/2)–1 1/2– ground state in 67Ni and (πp3/2)+1 3/2– ground state in 69Cu, Phys. Rev. Lett. 85(7), 1392 (2000)
https://doi.org/10.1103/PhysRevLett.85.1392
36 T. Ohtsubo, N. J. Stone, J. R. Stone, I. S. Towner, C. R. Bingham, et al., Magnetic dipole moment of the doubly-closed-shell plus one proton nucleus 49Sc, Phys. Rev. Lett. 109(3), 032504 (2012)
https://doi.org/10.1103/PhysRevLett.109.032504
37 P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys. 37, 193 (1996)
https://doi.org/10.1016/0146-6410(96)00054-3
38 D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, elativistic Hartree–Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure, Phys. Rep. 409(3–4), 101 (2005)
https://doi.org/10.1016/j.physrep.2004.10.001
39 J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Relativistic continuum Hartree–Bogoliubov theory for ground-state properties of exotic nuclei, Prog. Part. Nucl. Phys. 57(3), 470 (2006)
https://doi.org/10.1016/j.ppnp.2005.06.001
40 J. Meng, J.-Y. Guo, J. Li, Z. P. Li, H. Z. Liang, W. H. Long, Y. F. Niu, Z. M. Niu, Y. Zhang, P. W. Zhao, and S. G. Zhou, Covariant density functional theory in nuclear physics, Prog. Phys. 31(4), 199 (2011)
41 T. Nikšić, D. Vretenar, and P. Ring, Relativistic nuclear energy density functionals: Mean-field and beyond, Prog. Part. Nucl. Phys. 66(3), 519 (2011)
https://doi.org/10.1016/j.ppnp.2011.01.055
42 J. Meng, Relativistic Density Functional for Nuclear Structure, World Scientific, Singapore, 2015
43 M. M. Sharma, G. A. Lalazissis, and P. Ring, Rho meson coupling in the relativistic mean field theory and description of exotic nuclei, Phys. Lett. B 317(4), 9 (1993)
https://doi.org/10.1016/0370-2693(93)91561-Z
44 S. G. Zhou, J. Meng, and P. Ring, Spin symmetry in the antinucleon spectrum, Phys. Rev. Lett. 91(3), 262501 (2003)
https://doi.org/10.1103/PhysRevLett.91.262501
45 W. Koepf and P. Ring, A relativistic description of rotating nuclei: The yrast line of 20Ne, Nucl. Phys. A 493(1), 61 (1989)
https://doi.org/10.1016/0375-9474(89)90532-0
46 J. König and P. Ring, Identical bands in superdeformed nuclei: A relativistic description, Phys. Rev. Lett. 71(19), 3079 (1993)
https://doi.org/10.1103/PhysRevLett.71.3079
47 A. V. Afanasjev and P. Ring, Time-odd mean fields in the rotating frame: Microscopic nature of nuclear magnetism, Phys. Rev. C 62(3), 031302 (2000)
https://doi.org/10.1103/PhysRevC.62.031302
48 A. V. Afanasjev and H. Abusara, Time-odd mean fields in covariant density functional theory: Rotating systems, Phys. Rev. C 82(3), 034329 (2010)
https://doi.org/10.1103/PhysRevC.82.034329
49 P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Novel structure for magnetic rotation bands in 60Ni, Phys. Lett. B 699(3), 181 (2011)
https://doi.org/10.1016/j.physletb.2011.03.068
50 P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Antimagnetic rotation band in nuclei: A microscopic description, Phys. Rev. Lett. 107(12), 122501 (2011)
https://doi.org/10.1103/PhysRevLett.107.122501
51 J. Meng, J. Peng, S.-Q. Zhang, and P.-W. Zhao, Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation, Front. Phys. 8(1), 55 (2013)
https://doi.org/10.1007/s11467-013-0287-y
52 L. D. Miller, Relativistic single-particle potentials for nuclei, Ann. Phys. 91(1), 40 (1975)
https://doi.org/10.1016/0003-4916(75)90277-8
53 B. D. Serot, Elastic electron-nucleus scattering in a relativistic theory of nuclear structure, Phys. Lett. B 107(4), 263 (1981)
https://doi.org/10.1016/0370-2693(81)90826-1
54 J. A. McNeil, R. D. Amado, C. J. Horowitz, M. Oka, J. R. Shepard, and D. A. Sparrow, Resolution of the magnetic moment problem in relativistic theories, Phys. Rev. C 34(2), 746 (1986)
https://doi.org/10.1103/PhysRevC.34.746
55 S. Ichii, W. Bentz, A. Arima, and T. Suzuki, RPA type vertex corrections to isoscalar magnetic moments in the sigma-omega model, Phys. Lett. B 192(1–2), 11 (1987)
https://doi.org/10.1016/0370-2693(87)91132-4
56 J. R. Shepard, E. Rost, C.-Y. Cheung, and J. A. Mc Neil, Magnetic response of closed shell±1 nuclei in Dirac-Hartree approximation, Phys. Rev. C 37(3), 1130 (1988)
https://doi.org/10.1103/PhysRevC.37.1130
57 U. Hofmann and P. Ring, A new method to calculate magnetic moments in relativistic mean field theories, Phys. Lett. B 214(3), 307 (1988)
https://doi.org/10.1016/0370-2693(88)91367-6
58 R. J. Furnstahl and C. E. Price, Relativistic Hartree calculations of odd-Anuclei, Phys. Rev. C 40(3), 1398 (1989)
https://doi.org/10.1103/PhysRevC.40.1398
59 J. M. Yao, H. Chen, and J. Meng, Time-odd triaxial relativistic mean field approach for nuclear magnetic moments, Phys. Rev. C 74(2), 024307 (2006)
https://doi.org/10.1103/PhysRevC.74.024307
60 T. M. Morse, C. E. Price, and J. R. Shepard, Meson exchange current corrections to magnetic moments in quantum hadro-dynamics, Phys. Lett. B 251(2), 241 (1990)
https://doi.org/10.1016/0370-2693(90)90929-Z
61 R. J. Furnstahl and B. D. Serot, Nuclear currents in a relativistic mean field theory, Nucl. Phys. A 468(3–4), 539 (1987)
https://doi.org/10.1016/0375-9474(87)90182-5
62 P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319 (2010)
https://doi.org/10.1103/PhysRevC.82.054319
63 T. Bürvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model, Phys. Rev. C 65(4), 044308 (2002)
https://doi.org/10.1103/PhysRevC.65.044308
64 T. Nikšić, D. Vretenar, and P. Ring, Random-phase approximation based on relativistic point-coupling models, Phys. Rev. C 72(1), 014312 (2005)
https://doi.org/10.1103/PhysRevC.72.014312
65 J. Daoutidis and P. Ring, Continuum random-phase approximation for relativistic point coupling models, Phys. Rev. C 80(2), 024309 (2009)
https://doi.org/10.1103/PhysRevC.80.024309
66 C. De Conti, A. P. Galeão, and F. Krmpotić, Relativistic RPA for isobaric analogue and Gamow–Teller resonances in closed shell nuclei, Phys. Lett. B 444(2), 14 (1998)
https://doi.org/10.1016/S0370-2693(98)01373-2
67 N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Quasiparticle random phase approximation based on the relativistic Hartree-Bogoliubov model (II): Nuclear spin and isospin excitations, Phys. Rev. C 69(5), 054303 (2004)
https://doi.org/10.1103/PhysRevC.69.054303
68 H. Z. Liang, N. V. Giai, and J. Meng, Spin-isospin resonances: A self-consistent covariant description, Phys. Rev. Lett 101(12), 122502 (2008)
https://doi.org/10.1103/PhysRevLett.101.122502
69 B. D. Serot, Quantum hadrodynamics, Rep. Prog. Phys. 55(4), 1855 (1992)
https://doi.org/10.1088/0034-4885/55/11/001
70 W. Bentz, A. Arima, H. Hyuga, K. Shimizu, and K. Yazaki, Ward identity in the many-body system and magnetic moments, Nucl. Phys. A 436(4), 593 (1985)
https://doi.org/10.1016/0375-9474(85)90550-0
71 R. J. Furnstahl, Convection currents in nuclei in a relativistic mean field theory, Phys. Rev. C 38(1), 370 (1988)
https://doi.org/10.1103/PhysRevC.38.370
72 H. Ito and L. S. Kisslinger, Nuclear magnetic moments in the hybrid quark-hadron model, Ann. Phys. 174(1), 169 (1987)
https://doi.org/10.1016/0003-4916(87)90083-2
73 W. H. Long, J. Meng, N. Van Giai, and S.-G. Zhou, New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent mesonnucleon coupling, Phys. Rev. C 69(3), 034319 (2004)
https://doi.org/10.1103/PhysRevC.69.034319
74 T. Yamazaki, T. Nomura, S. Nagamiya, and T. Katou, Anomalous orbital magnetism of proton deduced from the magnetic moment of the 11– state of 210Po, Phys. Rev. Lett. 25(8), 547 (1970)
https://doi.org/10.1103/PhysRevLett.25.547
75 H. Horie and K. Sugimoto, Nuclear moments and nuclear structure, vol. 34 (J. Phys. Soc. Japan Suppl., 1973)
76 A. Green, A. Kallio, and K. Kolltveit, Odd parity excitations of 16O with a realistic nucleon-nucleon interaction, Phys. Lett. 14(2), 142 (1965)
https://doi.org/10.1016/0031-9163(65)90456-7
77 V. Gillet, A. Green, and E. Sanderson, Particle-hole description of lead 208, Phys. Lett. 11(1), 44 (1964)
https://doi.org/10.1016/0031-9163(64)90251-3
78 Y. E. Kim and J. O. Rasmussen, Energy levels of 210Bi and 210Po and the shell-model residual force, Nucl. Phys. 47, 184 (1963)
https://doi.org/10.1016/0029-5582(63)90864-2
79 K. A. Brueckner and J. L. Gammel, Properties of Nuclear Matter, Phys. Rev. 109(4), 1023 (1958)
https://doi.org/10.1103/PhysRev.109.1023
80 T. Hamada and I. Johnston, A potential model representation of two-nucleon data below 315 MeV, Nucl. Phys. 34(2), 382 (1962)
https://doi.org/10.1016/0029-5582(62)90228-6
81 G. Bertsch, J. Borysowicz, H. McManus, and W. Love, Interactions for inelastic scattering derived from realistic potentials, Nucl. Phys. A 284(3), 399 (1977)
https://doi.org/10.1016/0375-9474(77)90392-X
82 A. Arima and L. J. Huang-Lin, Magnetic moments of odd-mass nuclei with simple configurations, Phys. Lett. B 41(4), 435 (1972)
https://doi.org/10.1016/0370-2693(72)90668-5
83 J. Blomqvist, N. Freed, and H. Zetterström, Magnetic moments of single particle states in 207Pb and 209Bi, Phys. Lett. 18(1), 47 (1965)
https://doi.org/10.1016/0031-9163(65)90027-2
84 P. Ring and E. Werner, Distribution of single-particle strengths in the nuclei 207Tl, 207Pb, 209Bi and 209Pb, Nucl. Phys. A 211, 198 (1973)
https://doi.org/10.1016/0375-9474(73)90773-2
85 V. Bernard and N. Van Giai, Effects of collective modes on the single-particle states and the effective mass in 208Pb, Nucl. Phys. A 348, 75 (1980)
https://doi.org/10.1016/0375-9474(80)90546-1
86 E. Litvinova and P. Ring, Covariant theory of particlevibrational coupling and its effect on the single-particle spectrum, Phys. Rev. C 73(4), 044328 (2006)
https://doi.org/10.1103/PhysRevC.73.044328
87 P. Ring and E. Litvinova, Particle-vibrational coupling in covariant density-functional theory, Phys. At. Nucl. 72, 1285 (2009)
https://doi.org/10.1134/S1063778809080055
88 N. Stone, Tech. Rep., International Atomic Energy Agency, International Nuclear Data Committee, Vienna, Austria, 2014
89 G. Neyens, Nuclear magnetic and quadrupole moments for nuclear structure research on exotic nuclei, Rep. Prog. Phys. 66(4), 633 (2003)
https://doi.org/10.1088/0034-4885/66/4/205
90 A. Bohr and B. R. Mottelson, Nuclear Structure Volume II: Nuclear Deformation, W. A. Benjamin, Inc., 1975
91 E. K. Warburton, J. A. Becker, and B. A. Brown, Mass systematics for A= 29–44 nuclei: The deformed A~32 region, Phys. Rev. C 41(3), 1147 (1990)
https://doi.org/10.1103/PhysRevC.41.1147
92 S. Nummela, F. Nowacki, P. Baumann, E. Caurier, J. Cederkäll, et al., Intruder features in the island of inversion: The case of 33Mg, Phys. Rev. C 64(5), 054313 (2001)
https://doi.org/10.1103/PhysRevC.64.054313
93 B. V. Pritychenko, T. Glasmacher, P. D. Cottle, R. W. Ibbotson, K. W. Kemper, L. A. Riley, A. Sakharuk, H. Scheit, M. Steiner, and V. Zelevinsky, Structure of the “island of inversion” nucleus 33Mg, Phys. Rev. C 65(6), 061304 (2002)
https://doi.org/10.1103/PhysRevC.65.061304
94 Z. Elekes, Z. Dombradi, A. Saito, N. Aoi, H. Baba, et al., Proton inelastic scattering studies at the borders of the “island of inversion”: The 30,31Na and 33,34Mg case, Phys. Rev. C 73(4), 044314 (2006)
https://doi.org/10.1103/PhysRevC.73.044314
95 V. Tripathi, S. L. Tabor, P. F. Mantica, Y. Utsuno, P. Bender, et al., Intruder Configurations in the A= 33 isobars: 33Mg and 33Al, Phys. Rev. Lett. 101(14), 142504 (2008)
https://doi.org/10.1103/PhysRevLett.101.142504
96 D. T. Yordanov, M. Kowalska, K. Blaum, M. D. Rydt, K. T. Flanagan, P. Lievens, R. Neugart, G. Neyens, and H. H. Stroke, Spin and magnetic moment of 33Mg: evidence for a negative-parity intruder ground State, Phys. Rev. Lett. 99(21), 212501 (2007)
https://doi.org/10.1103/PhysRevLett.99.212501
97 R. D. Lawson, Theory of the Nuclear Shell Model, Oxford University Press, Oxford, 1980
98 M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, and X. Xu, The AME2016 atomic mass evaluation (II): Tables, graphs and references, Chin. Phys. C 41(3), 030003 (2017)
https://doi.org/10.1088/1674-1137/41/3/030003
99 H. Lü, L. S. Geng, and J. Meng, Constrained relativistic mean field approach with fixed configurations, Eur. Phys. J. A 31(3), 273 (2007)
https://doi.org/10.1140/epja/i2006-10224-4
100 E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, The shell model as a unified view of nuclear structure, Rev. Mod. Phys. 77(2), 427 (2005)
https://doi.org/10.1103/RevModPhys.77.427
101 Y. M. Zhao and A. Arima, Nucleon-pair approximation to the nuclear shell model, Phys. Rep. 545, 1 (2014)
https://doi.org/10.1016/j.physrep.2014.07.002
102 B.-A. Bian, Y.-M. Di, G.-L. Long, Y. Sun, J.-Y. Zhang, and J. A. Sheikh, Systematics of g factors of 2+1 states in even-even nuclei from Gd to Pt: A microscopic description by the projected shell model, Phys. Rev. C 75(1), 014312 (2007)
https://doi.org/10.1103/PhysRevC.75.014312
103 R. Bauer, J. Speth, V. Klemt, P. Ring, E. Werner, and T. Yamazaki, Magnetic multipole moments and transition probabilities of single-particle states around 208Pb, Nucl. Phys. A 209(3), 535 (1973)
https://doi.org/10.1016/0375-9474(73)90845-2
104 M. Rho, Quenching of axial-vector coupling constant in β-decay and pion-nucleus optical potential, Nucl. Phys. A 231, 493 (1974)
https://doi.org/10.1016/0375-9474(74)90512-0
105 E. Oset and M. Rho, Axial currents in nuclei: The Gamow–Teller matrix element, Phys. Rev. Lett. 42(1), 47 (1979)
https://doi.org/10.1103/PhysRevLett.42.47
106 W. Knüpfer, M. Dillig, and A. Richter, Quenching of the magnetic multipole strength distribution and of the anomalous magnetic moment in complex nuclei and mesonic renormalization of the nuclear spin current, Phys. Lett. B 95(3–4), 349 (1980)
https://doi.org/10.1016/0370-2693(80)90166-5
107 W. H. Long, N. Van Giai, and J. Meng, Densitydependent relativistic Hartree–Fock approach, Phys. Lett. B 640(4), 150 (2006)
https://doi.org/10.1016/j.physletb.2006.07.064
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed