Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (6): 132113   https://doi.org/10.1007/s11467-018-0843-6
  本期目录
Production cross sections for exotic nuclei with multinucleon transfer reactions
Feng-Shou Zhang1,2,3(), Cheng Li1,2, Long Zhu4, Peiwei Wen5
1. The Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
2. Beijing Radiation Center, Beijing 100875, China
3. Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
4. Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
5. China Institute of Atomic Energy, Beijing 102413, China
 全文: PDF(4989 KB)  
Abstract

The main progresses in the multinucleon transfer reactions at energies close to the Coulomb barrier are reviewed. After a short presentation of the experimental progress and theoretical progress, the predicted production cross sections for unknown neutron-rich heavy nuclei and the trans-uranium nuclei are presented.

Key wordsheavy-ion collisions    multinucleon transfer reactions    exotic nuclei    GRAZING model    DNS model    ImQMD model
收稿日期: 2018-07-24      出版日期: 2018-12-13
Corresponding Author(s): Feng-Shou Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(6): 132113.
Feng-Shou Zhang, Cheng Li, Long Zhu, Peiwei Wen. Production cross sections for exotic nuclei with multinucleon transfer reactions. Front. Phys. , 2018, 13(6): 132113.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0843-6
https://academic.hep.com.cn/fop/CN/Y2018/V13/I6/132113
1 H. Mach, A. Piotrowski, R. L. Gill, R. F. Casten, and D. D. Warner, Identification of Four New Neutron-Rich Rare-Earth Isotopes, Phys. Rev. Lett. 56, 1547 (1986)
https://doi.org/10.1103/PhysRevLett.56.1547
2 G. Engler, Y. Nir-El, M. Shmid, and S. Amiel, Half-life measurements of Rb, Sr, Y, Cs, Ba, La and Ce isotopes with A= 91–98 and A= 142–149, Phys. Rev. C 19, 1948 (1979)
https://doi.org/10.1103/PhysRevC.19.1948
3 J. Kurcewicz, F. Farinon, H. Geissel, S. Pietri, C. Nociforo, et al., Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS, Phys. Lett. B 717, 371 (2012)
https://doi.org/10.1016/j.physletb.2012.09.021
4 O. B. Tarasov, D. J. Morrissey, A. M. Amthor, T. Baumann, D. Bazin, et al., Evidence for a Change in the Nuclear Mass Surface with the Discovery of the Most Neutron-Rich Nuclei with 17≤Z≤25, Phys. Rev. Lett. 102, 142501 (2009)
https://doi.org/10.1103/PhysRevLett.102.142501
5 F. S. Zhang and L. X. Ge, Nuclear Fragmentation, Science Press, Beijing, 1998
6 F. S. Zhang and E. Suraud, Analysis of multifragmentation in a Boltzmann–Langevin approach, Phys. Rev. C 51, 3201 (1995)
https://doi.org/10.1103/PhysRevC.51.3201
7 F. S. Zhang and E. Suraud, Boltzmann–Langevin equation, dynamical instability and multifragmentation, Phys. lett. B 319, 35 (1993)
https://doi.org/10.1016/0370-2693(93)90777-F
8 Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Fluctuation-dissipation model for synthesis of superheavy elements, Phys. Rev. C 59, 796 (1999)
https://doi.org/10.1103/PhysRevC.59.796
9 C. Y. Wong, Interaction barrier in charged-particle nuclear reactions, Phys. Rev. Lett. 31, 766 (1973)
https://doi.org/10.1103/PhysRevLett.31.766
10 H. Lü, D. Boilley, Yasuhisa Abe, and C. W. Shen, Synthesis of superheavy elements: Uncertainty analysis to improve the predictive power of reaction models, Phys. Rev. C 94, 034616 (2016)
https://doi.org/10.1103/PhysRevC.94.034616
11 M. Thoennessen, The Discovery of Isotopes: A Complete Compilation, Springer International Publishing, US, 2016
12 S. Ayik, O. Yilmaz, B. Yilmaz, A. S. Umar, A. Gokalp, G. Turan, and D. Lacroix, Quantal description of nucleon exchange in a stochastic mean-field approach, Phys. Rev. C 91, 054601 (2015)
https://doi.org/10.1103/PhysRevC.91.054601
13 S. Ayik, K. Washiyama, and D. Lacroix, Fluctuation and dissipation dynamics in fusion reactions from a stochastic mean-field approach, Phys. Rev. C 79, 054606 (2009)
https://doi.org/10.1103/PhysRevC.79.054606
14 R. Yanez and W. Loveland, Predicting the production of neutron-rich heavy nuclei in multinucleon transfer reactions using a semi-classical model including evaporation and fission competition, GRAZING-F, Phys. Rev. C 91, 044608 (2015)
https://doi.org/10.1103/PhysRevC.91.044608
15 E. Vigezzi and A. Winther, On the application of complex trajectories to direct heavy-ion reactions, Ann. Phys. (NY) 192, 432 (1989)
https://doi.org/10.1016/0003-4916(89)90145-0
16 L. Corradi, A. M. Stefanini, D. Ackermann, S. Beghini, G. Montagnoli, C. Petrache, F. Scarlassara, C. H. Dasso, G. Pollarolo, and A. Winther, Multinucleon transfer reactions in 32S+208Pb close to the Coulomb barrier, Phys. Rev. C 49, 2875(R) (1994)
17 L. Corradi, A. M. Vinodkumar, A. M. Stefanini, E. Fioretto, G. Prete, S. Beghini, G. Montagnoli, F. Scarlassara, G. Pollarolo, F. Cerutti, and A. Winther, Light and heavy transfer products in 58Ni+208Pb at the Coulomb barrier, Phys. Rev. C 66, 024606 (2002)
https://doi.org/10.1103/PhysRevC.66.024606
18 O. Beliuskina, S. Heinz, V. Zagrebaev, V. Comas, C. Heinz, et al., On the synthesis of neutron-rich isotopes along the N= 126 shell in multinucleon transfer reactions, Eur. Phys. J. A 50, 161 (2014)
https://doi.org/10.1140/epja/i2014-14161-3
19 T. Welsh, W. Loveland, R. Yanez, J. S. Barrett, E. A. McCutchan, et al., Modeling multi-nucleon transfer in symmetric collisions of massive nuclei, Phys. Lett. B 771, 119 (2017)
https://doi.org/10.1016/j.physletb.2017.05.044
20 V. Zagrebaev and W. Greiner, Shell effects in damped collisions: A new way to superheavies, J. Phys. G Nucl. Part. Phys. 34, 2265 (2007)
https://doi.org/10.1088/0954-3899/34/11/004
21 S. Wuenschel, K. Hagel, M. Barbui, J. Gauthier, X. G. Cao, et al., Experimental survey of the production of α-decaying heavy elements in 238U+232 Th reactions at 7.5–6.1 MeV/nucleon, Phys. Rev. C 97, 064602 (2018)
https://doi.org/10.1103/PhysRevC.97.064602
22 S. Ayik, B. Yilmaz, O. Yilmaz, and A. S. Umar, Quantal diffusion description of multinucleon transfers in heavyion collisions, Phys. Rev. C 97, 054618 (2018)
https://doi.org/10.1103/PhysRevC.97.054618
23 S. Ayik, B. Yilmaz, O. Yilmaz, A. S. Umar, and G. Turan, Multinucleon transfer in central collisions of 238U+238 U, Phys. Rev. C 96, 024611 (2017)
https://doi.org/10.1103/PhysRevC.96.024611
24 R. Bass, Nuclear Reactions with Heavy Ions, Berlin, Heidelberg: Springer, 2010
25 C. J. Lin, Heavy-Ion Nuclear Reactions, Harbin Engineering Unirersity Press, Harbin, 2015
26 V. W. Oertzen, H. G. Bohlen, B. Gebauer, R. Künkel, F. Pühlhofer, and D. Scühll, Quasi-elastic neutron transfer and pairing effects in the interaction of heavy nuclei, Z. Phys. A 326, 463 (1987)
27 V. W. Oertzen, Cold multi-nucleon transfer between heavy nuclei and the synthesis of new elements, Z. Phys. A 342, 177 (1992)
https://doi.org/10.1007/BF01288466
28 F. L. H. Wolfs, Fission and deep-inelastic scattering yields for 58Ni+112,124Sn sn at energies around the barrier, Phys. Rev. C 36, 1379 (1987)
https://doi.org/10.1103/PhysRevC.36.1379
29 L. Corradi, A. M. Stefanini, C. J. Lin, S. Beghini, G. Montagnoli, F. Scarlassara, G. Pollarolo, and A. Winther, Multinucleon transfer processes in 64Ni+238U, Phys. Rev. C 59, 261 (1999)
https://doi.org/10.1103/PhysRevC.59.261
30 L. Corradi, G. Pollarolo, and S. Szilner, Multinucleon transfer processes in heavy-ion reactions, J. Phys. G 36, 113101 (2009)
https://doi.org/10.1088/0954-3899/36/11/113101
31 R. Kaufmann and R. Wolfgang, Complex nucleon transfer reactions of heavy ions, Phys. Rev. Lett. 3, 232 (1959)
https://doi.org/10.1103/PhysRevLett.3.232
32 R. W. Hasse, Approaches to nuclear friction, Rep. Prog. Phys. 41, 1027 (1978)
https://doi.org/10.1088/0034-4885/41/7/002
33 D. H. E. Gross and H. Kalinowski, Friction model of heavy-ion collisions, Phys. Rep. 45, 175 (1978)
https://doi.org/10.1016/0370-1573(78)90031-5
34 W. Nörenberg, Transport phenomena in multi-nucleon transfer reactions, Phys. Lett. B 52, 289 (1974)
https://doi.org/10.1016/0370-2693(74)90043-4
35 J. Galin, D. Guerreau, M. Lefort, J. Peter, X. Tarrago, and R. Basile, Mechanism of single-nucleon and multinucleon transfer reactions in grazing collisions of heavy ions on silver, Nucl. Phys. A 159, 461 (1970)
https://doi.org/10.1016/0375-9474(70)90720-7
36 A. G. Artukh, G. F. Gridnev, V. L. Mikheev, and V. V. Volkov, New isotopes 22O, 20N and 18C produced in transfer reactions with heavy ions, Nucl. Phys. A 137, 348 (1969)
https://doi.org/10.1016/0375-9474(69)90114-6
37 A. G. Artukh, G. F. Gridnev, V. L. Mikheev, V. V. Volkov, and J. Wilczynski, Transfer reactions in the interaction of 40Ar with 232Th, Nucl. Phys. A 215, 91 (1973)
https://doi.org/10.1016/0375-9474(73)90104-8
38 J. Wilczynski, Nuclear molecules and nuclear friction, Phys. Lett. B 47, 484 (1973)
https://doi.org/10.1016/0370-2693(73)90021-X
39 B. Tamain, C. Ng, J. Pter, and F. Hanappe, Fission of medium and heavy nuclei induced by 40Ar from 160 to 300 MeV: Cross sections, Nucl. Phys. A 252, 187 (1975)
https://doi.org/10.1016/0375-9474(75)90612-0
40 P. Auger, T. H. Chiang, J. Galin, B. Gatty, D. Guerreau, E. Nolte, J. Pouthas, X. Tarrago, and J. Girard, Observation of new nuclides 37Si, 40P and 41S, 42S produced in deeply inelastic reactions induced by 40Ar on 238U, Z. Phys. A 289, 255 (1979)
https://doi.org/10.1007/BF01415785
41 D. Guerrau, J. Galin, B. Gatty, X. Tarrago, J. Girard, R. Lucas, and C. Ngô, Seven new neutron rich nuclides observed in deep inelastic collisions of 340 MeV 40Ar on 238U, Z. Phys. A 295, 105 (1980)
https://doi.org/10.1007/BF01414304
42 H. Breuer, K. L. Wolf, B. G. Glagola, K. K. Kwiatkowski, A. C. Mignerey, V. E. Viola, W. W. Wilcke, W. U. Schrder, J. R. Huizenga, D. Hilscher, and J. Birkelund, Production of neutron-excess nuclei in 56Fe-induced reactions, Phys. Rev. C 22, 2454 (1980)
https://doi.org/10.1103/PhysRevC.22.2454
43 P. A. Söderström, J. Nyberg, P. H. Regan, A. Algora, G. de Angelis, et al., Spectroscopy of neutron-rich 168,170Dy: Yrast band evolution close to the NpNnvalence maximum, Phys. Rev. C 81, 034310 (2010)
https://doi.org/10.1103/PhysRevC.81.034310
44 H. Sophie, Multinucleon transfer reactions a pathway to new heavy and superheavy nuclei? Phys. Conf. Ser. 1014, 012005 (2018)
https://doi.org/10.1088/1742-6596/1014/1/012005
45 S. K. Allison, P. G. Murphy, and E. Norbeck, Mass of 13B from the nuclear reaction 7Li(7Li, p)13B, Phy. Rev. 102, 1182 (1956)
https://doi.org/10.1103/PhysRev.102.1182.2
46 T. S. Bhatia, H. Hafner, R. Haupt, R. Maschuw, and G. J. Wagner, Masses of 62Fe and the new isotope 68Ni from (18O+20Ni) reactions, Z. Phys. A 281, 65 (1977)
https://doi.org/10.1007/BF01408614
47 P. Dessagne, M. Bernas, M. Langevin, G. C. Morrison, J. Payet, F. Pougheon, and P. Roussel, The complex transfer reaction (14C, 15O) on Ni, Zn and Ge targets: Existence and mass of 69Ni, Nucl. Phys. A 426, 399 (1984)
https://doi.org/10.1016/0375-9474(84)90114-3
48 K. Zhao, J. S. Lilley, P. V. Drumm, D. D. Warner, R. A. Cunningham, and J. N. Mo, Production of 199Ir via exotic nucleon transfer reaction, Chin. Phys. Lett. 265 (1993)
https://doi.org/10.1088/0256-307X/10/5/003
49 L. Zhang, G. M. Jin, J. H. Zhao, W. F. Yang, Y. F. Yang, Z. Z. Zhao, J. W. Zheng, X. R. Sun, J. C. Wang, Z. W. Li, Z. Qin, G. H. Guo, Y. Luo, Z. Jan, and Z. Jingye, Observation of the new neutron-rich nuclide 208Hg, Phys. Rev. C 49, R592 (1994)
https://doi.org/10.1103/PhysRevC.49.R592
50 S. Yuan, W. Yang, W. Mou, X. Zhang, Z. Li, X. Yu, J. Gu, Y. Guo, Z. Gan, H. Liu, and J. Guo, A new isotope of protactinium: 239Pa, Z. Phys. A 352, 235 (1995)
https://doi.org/10.1007/BF01289491
51 L. Zhang, J. Zhao, J. Zheng, J. Wang, Z. Qin, Y. Yang, C. Zhang, G. Jin, G. Guo, Y. Du, T. Guo, T. Wang, B. Guo, J. Tian, and Y. Lou, Neutron-rich heavy residues and exotic multinucleon transfer, Phys. Rev. C 58, 156 (1998)
https://doi.org/10.1103/PhysRevC.58.156
52 S. Yuan, W. Yang, Z. Li, J. He, T. Ma, K. Fang, S. Shen, Z. Gan, Q. Pan, Z. Chen, T. Guo, W. Mou, D. Su, Y. Xu, J. Guo, H. Liu, L. Shi, Z. Zhao, and H. Ma, Production and identification of a new heavy neutronrich isotope 186Hf, Phys. Rev. C 57, 1506 (1998)
https://doi.org/10.1103/PhysRevC.57.1506
53 J. He, W. Yang, S. Yuan, Y. Xu, Z. Li, T. Ma, B. Xiong, Z. Qin, W. Mou, Z. Gan, L. Shi, T. Guo, Z. Chen, and J. Guo, Synthesis and identification of a new heavy neutron-rich isotope 238Th, Phys. Rev. C 59, 520 (1999)
https://doi.org/10.1103/PhysRevC.59.520
54 C. Bruske, K. H. Burkard, W. Hller, R. Kirchner, O. Klepper, and E. Roeckl, Status report on the gsi on-line mass separator facility, Nucl. Instr. Meth. Phys. Res. B 186, 61 (1981)
https://doi.org/10.1016/0029-554X(81)90888-0
55 K. L. Gippert, E. Runte, W. D. Schmidt-Ott, P. Tidemand-Petersson, N. Kaffrell, et al., Decay studies of neutron-rich radium and actinium isotopes, including the new nuclides 232Ra and 232,234Ac, Nucl. Phys. A 453, 1 (1986)
https://doi.org/10.1016/0375-9474(86)90025-4
56 R. M. Chasteler, J. M. Nitschke, R. B. Firestone, K. S. Vierinen, P. A. Wilmarth, and A. A. Shihab-Eldin, Identification of the neutron-rich isotope 174Er, Z. Phys. A 332, 239 (1989)
57 R. M. Chasteler, J. M. Nitschke, R. B. Firestone, K. S. Vierinen, and P. A. Wilmarth, Decay of the neutronrich isotope 171Ho and the identification of 169Dy, Phys. Rev. C 42, R1171 (1990)
https://doi.org/10.1103/PhysRevC.42.R1171
58 L. Corradi, J. H. He, D. Ackermann, A. M. Stefanini, A. Pisent, et al., Multinucleon transfer reactions in 40Ca+124Sn, Phys. Rev. C 54, 201 (1996)
https://doi.org/10.1103/PhysRevC.54.201
59 L. Corradi, Evidence of complex degrees of freedom in multinucleon transfer reactions of 48Ca+124Sn, Phys. Rev. C 56, 938 (1997)
https://doi.org/10.1103/PhysRevC.56.938
60 A. M. Stefanini, L. Corradi, G. Maron, A. Pisent, M. Trotta, et al., The heavy-ion magnetic spectrometer prisma, Nucl. Phys. A 701, 217 (2002)
https://doi.org/10.1016/S0375-9474(01)01578-0
61 H. Savajols, Vamos: A variable mode high acceptance spectrometer, Nucl. Phys. A 654, 1027c (1999)
https://doi.org/10.1016/S0375-9474(00)88592-9
62 A. Cunsolo, F. Cappuzzello, A. Foti, A. Lazzaro, A. L. Melita, et al., Technique for 1st order design of a large-acceptance magnetic spectrometer, Nucl. Instrum. Methods Phys. Res 481, 48 (2002)
https://doi.org/10.1016/S0168-9002(01)01357-2
63 L. Corradi, Heavy ion transfer reactions: Ongoing and future experiments performed with large acceptance magnetic spectrometers, EPJ Web Conf. 63, 02002 (2013)
64 L. Corradi, A. M. Vinodkumar, A. M. Stefanini, E. Fioretto, G. Prete, et al., Light and heavy transfer products in 58Ni+208Pb at the coulomb barrier, Phys. Rev. C 66, 024606 (2002)
https://doi.org/10.1103/PhysRevC.66.024606
65 S. Szilner, L. Corradi, G. Pollarolo, S. Beghini, B. R. Behera, et al., Multinucleon transfer processes in 40Ca+208 Pb, Phys. Rev. C 71, 044610 (2005)
https://doi.org/10.1103/PhysRevC.71.044610
66 D. Montanari, L. Corradi, S. Szilner, G. Pollarolo, E. Fioretto, et al., Neutron pair transfer in 60Ni+116 Sn far below the coulomb barrier, Phys. Rev. Lett. 113, 052501 (2014)
https://doi.org/10.1103/PhysRevLett.113.052501
67 M. Evers, M. Dasgupta, D. J. Hinde, and C. Simenel, Multi-nucleon transfer in the reactions 16O, 32S+208Pb, EPJ Web Conf. 17 (2011)
68 R. Broda, C. T. Zhang, P. Kleinheinz, R. Menegazzo, K. H. Maier, H. Grawe, M. Schramm, R. Schubart, M. Lach, and S. Hofmann, Collisions between 106Cd and 54Fe at 30 MeV above the coulomb barrier by high resolution γγ coincidences, Phys. Rev. C 49, R575 (1994)
https://doi.org/10.1103/PhysRevC.49.R575
69 R. Broda, Spectroscopic studies with the use of deepinelastic heavy-ion reactions, J. Phys. G 32, R151 (2006)
https://doi.org/10.1088/0954-3899/32/6/R01
70 C. H. Dasso, G. Pollarolo, and A. Winther, Systematics of isotope production with radioactive beams, Phys. Rev. Lett. 73, 1907 (1994)
https://doi.org/10.1103/PhysRevLett.73.1907
71 G. G. Adamian, N. V. Antonenko, and A. S. Zubov, Production of unknown transactinides in asymmetry-exitchannel quasifission reactions, Phys. Rev. C 71, 034603 (2005)
https://doi.org/10.1103/PhysRevC.71.034603
72 V. Zagrebaev and W. Greiner, Production of new heavy isotopes in low-energy multinucleon transfer reactions, Phys. Rev. Lett. 101, 122701 (2008)
https://doi.org/10.1103/PhysRevLett.101.122701
73 Z. Q. Feng, G. M. Jin, and J. Q. Li, Production of heavy isotopes in transfer reactions by collisions of 238U+238U, Phys. Rev. C 80, 067601 (2009)
https://doi.org/10.1103/PhysRevC.80.067601
74 G. G. Adamian, N. V. Antonenko, V. V. Sargsyan, and W. Scheid, Possibility of production of neutron-rich zn and ge isotopes in multinucleon transfer reactions at low energies, Phys. Rev. C 81, 024604 (2010)
https://doi.org/10.1103/PhysRevC.81.024604
75 G. G. Adamian, N. V. Antonenko, V. V. Sargsyan, and W. Scheid, Predicted yields of new neutron-rich isotopes of nuclei with z= 64–80 in the multinucleon transfer reaction 48Ca+238 U, Phys. Rev. C 81, 057602 (2010)
https://doi.org/10.1103/PhysRevC.81.057602
76 Y. X. Watanabe, Y. H. Kim, S. C. Jeong, Y. Hirayama, N. Imai, et al., Pathway for the production of neutronrich isotopes around the N= 126 shell closure, Phys. Rev. Lett. 115, 172503 (2015)
https://doi.org/10.1103/PhysRevLett.115.172503
77 V. F. Comas, S. Heinz, S. Hofmann, D. Ackermann, J. A. Heredia, F. P. Heßberger, J. Khuyagbaatar, B. Kindler, B. Lommel, and R. Mann, Study of multinucleon transfer reactions in 58;64Ni+207Pb collisions at the velocity filter ship, Eur. Phys. J. A 49, 1 (2013)
https://doi.org/10.1140/epja/i2013-13112-x
78 E. M. Kozulin, E. Vardaci, G. N. Knyazheva, A. A. Bogachev, S. N. Dmitriev, et al., Mass distributions of the system 136Xe+208Pb at laboratory energies around the coulomb barrier: A candidate reaction for the production of neutron-rich nuclei at N= 126, Phys. Rev. C 86, 044611 (2012)
https://doi.org/10.1103/PhysRevC.86.044611
79 J. V. Kratz, M. Schädel, and H. W. Gäggeler, Reexamining the heavy-ion reactions 238U+238U and 238U+248Cm and actinide production close to the barrier, Phys. Rev. C 88, 054615 (2013)
https://doi.org/10.1103/PhysRevC.88.054615
80 J. S. Barrett, W. Loveland, R. Yanez, S. Zhu, A. D. Ayangeakaa, et al., 136Xe+208 Pb reaction: A test of models of multinucleon transfer reactions, Phys. Rev. C 91, 064615 (2015)
https://doi.org/10.1103/PhysRevC.91.064615
81 A. Vogt, M. Siciliano, B. Birkenbach, P. Reiter, K. Hadyska-Klk, et al., High-spin structures in 132Xe and 133Xe and evidence for isomers along the N= 79 isotones, Phys. Rev. C 96, 024321 (2017)
https://doi.org/10.1103/PhysRevC.96.024321
82 E. M. Kozulin, V. I. Zagrebaev, G. N. Knyazheva, I. M. Itkis, K. V. Novikov, M. G. Itkis, S. N. Dmitriev, I. M. Harca, A. E. Bondarchenko, A. V. Karpov, V. V. Saiko, and E. Vardaci, Inverse quasifission in the reactions 156,160Gd+186W, Phys. Rev. C 96, 064621 (2017)
https://doi.org/10.1103/PhysRevC.96.064621
83 V. I. Zagrebaev, Y. T. Oganessian, M. G. Itkis, and W. Greiner, Superheavy nuclei and quasi-atoms produced in collisions of transuranium ions, Phys. Rev. C 73, 031602 (2006)
https://doi.org/10.1103/PhysRevC.73.031602
84 J. V. Kratz, W. Loveland, and K. J. Moody, Syntheses of transuranium isotopes with atomic numbers Z≤103 in multi-nucleon transfer reactions, Nucl. Phys. A 944, 117 (2015)
https://doi.org/10.1016/j.nuclphysa.2015.06.004
85 M. Schädel, Prospects of heavy and superheavy element production via inelastic nucleus-nucleus collisions from 238U+238U to 18O+254Es, EPJ Web Conf. 131, 04001 (2016)
https://doi.org/10.1051/epjconf/201613104001
86 A. Vogt, B. Birkenbach, P. Reiter, L. Corradi, T. Mijatović, et al., Light and heavy transfer products in 136Xe+238 U multinucleon transfer reactions, Phys. Rev. C 92, 024619 (2015)
https://doi.org/10.1103/PhysRevC.92.024619
87 H. M. Devaraja, S. Heinz, O. Beliuskina, V. Comas, S. Hofmann, et al., Observation of new neutron-deficient isotopes with Z≥92 in multinucleon transfer reactions, Phys. Lett. B 748, 199 (2015)
https://doi.org/10.1016/j.physletb.2015.07.006
88 H. Gäggeler, W. Brüchle, M. Brügger, M. Schädel, K. Smmerer, et al., Production of cold target-like fragments in the reaction of 48Ca+248Cm, Phys. Rev. C 33, 1983 (1986)
https://doi.org/10.1103/PhysRevC.33.1983
89 N. V. Antonenko, E. A. Cherepanov, A. K. Nasirov, V. P. Permjakov, V. V. Volkov, Competition between complete fusion and quasi-fission in reactions between massive nuclei: The fusion barrier, Phys. Lett. B 319, 425 (1993)
https://doi.org/10.1016/0370-2693(93)91746-A
90 G. G. Adamian, N. V. Antonenko, W. Scheid, Model of competition between fusion and quasifission in reactions with heavy nuclei, Nucl. Phys. A 618, 176 (1997)
https://doi.org/10.1016/S0375-9474(97)88172-9
91 Yu. E. Penionzhkevich, G. G. Adamian, N. V. Antonenko, Towards neutron drip line via transfer-type reactions, Phys. Lett. B 621, 119 (2005)
https://doi.org/10.1016/j.physletb.2005.05.085
92 L. Zhu, J. Su, and P. W. Wen, Optimal incident energies for production of neutron-deficient actinide nuclei in the reaction 58Ni+238 U, Phys. Rev. C 95, 044608 (2017)
https://doi.org/10.1103/PhysRevC.95.044608
93 L. Zhu, Z. Q. Feng, and F. S. Zhang, Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system mode, J. Phys. G 42, 085102 (2015)
https://doi.org/10.1088/0954-3899/42/8/085102
94 R. J. Charity, Systematic description of evaporation spectra for light and heavy compound nuclei, Phys. Rev. C 82, 014610 (2010)
https://doi.org/10.1103/PhysRevC.82.014610
95 L. Zhu, J. Su, W. J. Xie, and F. S. Zhang, Theoretical study on production of heavy neutron-rich isotopes around the N= 126 shell closure in radioactive beam induced transfer reactions, Phys. Lett. B 767, 437 (2017)
https://doi.org/10.1016/j.physletb.2017.01.082
96 M. Schädel, et al., Actinide production in collisions of 238U with 248Cm, Phys. Rev. Lett. 48, 852 (1982)
https://doi.org/10.1103/PhysRevLett.48.852
97 L. Zhu, J. Su, W. J. Xie, and F. S. Zhang, Production of neutron-rich transcalifornium nuclei in 238U-induced transfer reactions, Phys. Rev. C 94, 054606 (2016)
https://doi.org/10.1103/PhysRevC.94.054606
98 L. Zhu, Theoretical study on production cross sections of exotic actinide nuclei in multinucleon transfer reactions, Chin. Phys. C 41, 124102 (2017)
https://doi.org/10.1088/1674-1137/41/12/124102
99 A. Winther, Grazing reactions in collisions between heavy nuclei, Nucl. Phys. A 572, 191 (1994)
https://doi.org/10.1016/0375-9474(94)90430-8
100 A. Winther, Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime, Nucl. Phys. A 594, 203 (1995)
https://doi.org/10.1016/0375-9474(95)00374-A
101 http://nrv.jinr.ru/nrv/webnrv/grazing/
102
103 P. W. Wen, C. Li, L. Zhu, C. J. Lin, and F. S. Zhang, Mechanism of multinucleon transfer reaction based on the GRAZING model and DNS model, J. Phys. G 44, 115101 (2017)
https://doi.org/10.1088/1361-6471/aa8b07
104 J. Aichelin, “Quantum” molecular dynamics-a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions, Phys. Rep. 202, 233 (1991)
https://doi.org/10.1016/0370-1573(91)90094-3
105 N. Wang, Z. X. Li, and X. Z. Wu, Improved quantum molecular dynamics model and its applications to fusion reaction near barrier, Phys. Rev. C 65, 064608 (2002)
https://doi.org/10.1103/PhysRevC.65.064608
106 C. Li, J. L. Tian, L. Ou, and N. Wang, Finite-size effects on fragmentation in heavy-ion collisions, Phys. Rev. C 87, 064615 (2013)
https://doi.org/10.1103/PhysRevC.87.064615
107 C. Li, F. Zhang, J. J. Li, L. Zhu, J. L. Tian, N. Wang, and F. S. Zhang, Multinucleon transfer in the 136Xe+ 208Pb reaction, Phys. Rev. C 93, 014618 (2016)
https://doi.org/10.1103/PhysRevC.93.014618
108 C. Li, P. W. Wen, J. J. Li, G. Zhang, B. Li, X. X. Xu, Z. Liu, S. F. Zhu, and F. S. Zhang, Production mechanism of new neutron-rich heavy nuclei in the 136Xe+198 Pt reaction, Phys. Lett. B 776, 278 (2018)
https://doi.org/10.1016/j.physletb.2017.11.060
109 L. Zhu, F. S. Zhang, P. W. Wen, J. Su, and W. J. Xie, Production of neutron-rich nuclei with Z= 60–73 in reactions induced by Xe isotopes, Phys. Rev. C 96, 024606 (2017)
https://doi.org/10.1103/PhysRevC.96.024606
110 G. Zhang, C. Li, P. W. Wen, J. J. Li, X. X. Xu, B. Li, Z. Liu, and F. S. Zhang, Production of neutron-rich 209–212Pt isotopes based on a dinuclear system model, Phys. Rev. C 98, 014603 (2018)
https://doi.org/10.1103/PhysRevC.98.014613
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed