Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (6): 132112   https://doi.org/10.1007/s11467-018-0844-5
  本期目录
Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou
Ming-Ze Sun1,2, Xiao-Hong Zhou1(), Meng Wang1(), Yu-Hu Zhang1, Yu. A. Litvinov1,3
1. Key Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
 全文: PDF(15224 KB)  
Abstract

In recent years, extensive short-lived nuclear mass measurements have been carried out at the Heavy- Ion Research Facility (HIRFL) in Lanzhou using Isochronous Mass Spectrometry (IMS). The obtained mass values have been successfully applied to nuclear structure and astrophysics studies. In this contribution, we give a brief introduction to the nuclear mass measurements at HIRFL-CSR facility. Main technical developments are described and recent results are summarized. Furthermore, we envision the future perspective for the next-generation storage ring facility HIAF in Huizhou.

Key wordsnuclear mass    short-lived nuclei    storage ring    isochronous mass spectrometry
收稿日期: 2018-07-15      出版日期: 2018-12-13
Corresponding Author(s): Xiao-Hong Zhou,Meng Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(6): 132112.
Ming-Ze Sun, Xiao-Hong Zhou, Meng Wang, Yu-Hu Zhang, Yu. A. Litvinov. Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou. Front. Phys. , 2018, 13(6): 132112.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0844-5
https://academic.hep.com.cn/fop/CN/Y2018/V13/I6/132112
1 G. Audi, The history of nuclidic masses and of their evaluation, Int. J. Mass Spectrom. 251, 85 (2006)
https://doi.org/10.1016/j.ijms.2006.01.048
2 K. Blaum, High-accuracy mass spectrometry with stored ions, Phys. Rev. 425, 1 (2006)
3 D. Lunney, J. M. Pearson, and C. Thibault, Recent trends in the determination of nuclear masses, Rev. Mod. Phys. 75, 1021 (2003)
https://doi.org/10.1103/RevModPhys.75.1021
4 A. S. Eddington, The internal constitution of the stars, Nature 106, 14 (1920)
https://doi.org/10.1038/106014a0
5 F. W. Aston, A new mass spectrograph and the wholenumber rule, Proc. Roy. Soc. A 115, 487 (1927)
https://doi.org/10.1098/rspa.1927.0106
6 F. W. Aston, Mass spectra and isotopes, Nobel Lecture, (1922)
7 G. Gamow, Mass defect curve and nuclear constitution, Proc. Royal Society A 126, 632 (1930)
https://doi.org/10.1098/rspa.1930.0032
8 C. F. von Weizsäcker, Zur Theorie der Kernmassen, Z. Phys. 96, 431 (1935)
https://doi.org/10.1007/BF01337700
9 H. A. Bethe und R. F. Bacher, Stationary states of nuclei, Rev. Mod. Phys. 8, 82 (1936)
https://doi.org/10.1103/RevModPhys.8.82
10 A. J. Dempster, A new method of positive ray analysis, Phys. Rev. 11, 316 (1918)
https://doi.org/10.1103/PhysRev.11.316
11 J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, 1964 Atomic mass table, Nucl. Phys. 67, 1 (1965)
https://doi.org/10.1016/0029-5582(65)90114-8
12 H. Ewald and H. Hintenberger, Methoden und Anwendungen der Massenspektroskopie, Zeitschrift Naturforschung Teil A 8, 338 (1953)
13 F. Everling, L. A. König, J. H. E. Mattauch, and A. H. Wapstra, Relative nuclidic masses, Nucl. Phys. 18, 529 (1960)
https://doi.org/10.1016/0029-5582(60)90423-5
14 K. Blaum and Yu. A. Litvinov (Eds.), 100 Years of Mass Spectrometry, Int. J. Mass Spectr.349–350, 1 (2013)
15 H. Geissel, et al. (.), Encyclopedia of Nuclear Physics and its Applications, 1st Ed., Wiley-VCH, Weinheim, 2013
16 T. Kubo, In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan, Nucl. Instrum. Methods Phys. Res. B 204, 97 (2003)
https://doi.org/10.1016/S0168-583X(02)01896-7
17 J. Kurcewicz, F. Farinon, H. Geissel, S. Pietri, C. Nociforo, et al., Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS, Phys. Lett. B 717, 371 (2012)
https://doi.org/10.1016/j.physletb.2012.09.021
18 J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. M. Perhac, and M. Stoitsov, The limits of the nuclear landscape, Nature (London)486, 509 (2012)
https://doi.org/10.1038/nature11188
19 X. W. Xia, Y. Lim, P. W. Zhao, H. Z. Liang, X. Y. Qu, Y. Chen, H. Liu, L. F. Zhang, S. Q. Zhang, Y. Kim, and J. Meng, The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory, Atomic Data and Nuclear Data Tables121–122, 1 (2018)
https://doi.org/10.1016/j.adt.2017.09.001
20 M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, The AME2016 atomic mass evaluation (II): Tables, graphs and references, Chin. Phys. C 41, 030003 (2017)
https://doi.org/10.1088/1674-1137/41/3/030003
21 J. Dobaczewski, I. Hamamoto, W. Nazarewicz, and J. A. Sheikh, Nuclear shell structure at particle drip lines, Phys. Rev. Lett. 72, 981 (1994)
https://doi.org/10.1103/PhysRevLett.72.981
22 T. Otsuka, R. Fujimoto, Y. Utsuno, B. A. Brown, M. Honma, and T. Mizusaki, Magic numbers in exotic nuclei and spin-isospin properties of the NNInteraction, Phys. Rev. Lett. 87, 082502 (2001)
https://doi.org/10.1103/PhysRevLett.87.082502
23 L. Satpathy and S. K. Patra, New magic numbers and new islands of stability in drip-line regions in mass model, Nucl. Phys. A 722, C24 (2003)
https://doi.org/10.1016/S0375-9474(03)01330-7
24 D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, et al., Evidence for a new nuclear “magic number” from the level structure of 54Ca, Nature 502, 207 (2013)
https://doi.org/10.1038/nature12522
25 A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, New magic number, N= 16, near the neutron drip line, Phys. Rev. Lett. 84, 5493 (2000)
https://doi.org/10.1103/PhysRevLett.84.5493
26 R. Kanungo, A new view of nuclear shells, Phys. Scr. T152, 014002 (2013)
https://doi.org/10.1088/0031-8949/2013/T152/014002
27 X. Xu, M. Wang, Y.-H. Zhang, H.-S. Xu, P. Shuai, et al., Direct mass measurements of neutron-rich 86Kr projectile fragments and the persistence of neutron magicnumber N= 32 in Sc isotopes, Chin. Phys. C 39, 106201 (2015)
https://doi.org/10.1088/1674-1137/39/10/106201
28 E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys. 29, 547 (1957)
https://doi.org/10.1103/RevModPhys.29.547
29 H. Schatz, Nuclear masses in astrophysics, International Journal of Mass Spectrometry349–350, 181 (2013)
https://doi.org/10.1016/j.ijms.2013.03.016
30 D. Martin, A. Arcones, W. Nazarewicz, and E. Olsen, Impact of nuclear mass uncertainties on the γprocess, Phys. Rev. Lett. 116, 121101 (2016)
https://doi.org/10.1103/PhysRevLett.116.121101
31 R. Knöbel, M. Diwisch, H. Geissel, Yu. A. Litvinov, Z. Patyk, et al., New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI, Eur. Phys. J. A 52, 138 (2016)
https://doi.org/10.1140/epja/i2016-16138-6
32 K. Blaum, M. Block, R. B. Cakirli, S. Eliseev, M. Kowalska, S. Kreim, Y. A. Litvinov, Sz. Nagy, W. Nortershauser, and D. T. Yordanov, Measurements of groundstate properties for nuclear structure studies by precision mass and laser spectroscopy, J. Phys. Conf. Ser. 312, 092001 (2011)
https://doi.org/10.1088/1742-6596/312/9/092001
33 K. Blaum, J. Dilling, and W. Nortershauser, Precision atomic physics techniques for nuclear physics with radioactive beams, Phys. Scr. T152, 014017 (2013)
https://doi.org/10.1088/0031-8949/2013/T152/014017
34 B. Franzke, H. Geissel, and G. Münzenberg, Mass and lifetime measurements of exotic nuclei in storage rings, Mass Spec. Rev. 27, 428 (2008)
https://doi.org/10.1002/mas.20173
35 P. Egelhof, Y. Litvinov and M. Steck, Proceedings of the 9th International Conference on Nuclear Physics at Storage Rings STORI’14, Phys. Scr. 2015, 010301 (2015)
https://doi.org/10.1088/0031-8949/2015/T166/010301
36 H. Geissel, Yu. A. Litvinov, F. Attallah, K. Beckert, P. Beller, et al., New results with stored exotic nuclei at relativistic energies, Nucl. Phys. A 746, 150c (2004)
https://doi.org/10.1016/j.nuclphysa.2004.09.030
37 Y. H. Zhang, Y. A. Litvinov, T. Uesaka and H. S. Xu, Storage ring mass spectrometry for nuclear structure and astrophysics research, Phys. Scr. 91, 073002 (2016)
https://doi.org/10.1088/0031-8949/91/7/073002
38 X. Gao, Y. J. Yuan, J. C. Yang, S. Litvinov, M. Wang, Y. Litvinov, W. Zhang, D. Y. Yin, G. D. Shen, W. P. Chai, J. Shi, and P. Shang, Isochronicity corrections for isochronous mass measurements at the HIRFL-CSRe, Nucl. Instr. Meth. in Phys. Res. Sect. A 763, 53 (2014)
39 J. W. Xia, W. L. Zhan, B. W. Wei, Y. J. Yuan, M. T. Song, et al., The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou, Nucl. Instr. Meth. in Phys. Res. Sect. A 488, 11 (2002)
40 Y. J. Yuan, J. C. Yang, J. W. Xia, P. Yuan, W. M. Qiao, et al., Status of the HIRFL–CSR complex, Nucl. Instrum. Methods Phys. Res. B 317, 214 (2013)
https://doi.org/10.1016/j.nimb.2013.07.040
41 B. Mei, X. L. Tu, M. Wang, H. S. Xu, R. S. Mao, et al., A high performance time-of-flight detector applied to isochronous mass measurement at CSRe, Nucl. Instrum. Meth. A 624, 109 (2010)
https://doi.org/10.1016/j.nima.2010.09.001
42 P. Zhang, X. Xu, P. Shuai, R. J. Chen, X. L. Yan, et al., High-precision QEC values of superallowed 0+→0+β-emitters 46Cr, 50Fe and 54Ni, Phys. Lett. B 767, 20 (2017)
https://doi.org/10.1016/j.physletb.2017.01.039
43 M.Hausmann, J. Stadlmann, F. Attallah, K. Beckert, P. Beller, et al., Isochronous mass measurements of hot exotic nuclei, Hyperfine Interactions 132, 291 (2001)
https://doi.org/10.1023/A:1011911720453
44 X. L. Tu, M. Wang, Yu. A. Litvinov, Y. H. Zhang, H. S. Xu, et al., Precision isochronous mass measurements at the storage ring CSRe in Lanzhou, Nucl. Instrum. Methods Phys. Res. A 654, 213 (2011)
https://doi.org/10.1016/j.nima.2011.07.018
45 B. -H. Sun, H. Geissel, M. Hausmann, C. Kozhuharov, R. Knöbel, Yu. A. Litvinov, J. Meng, Z. Patyk, T. Radon, and C. Scheidenberger, Identification of time-offlight spectra for isochronous mass measurements, Chin. Phys. C 33, 161 (2009)
https://doi.org/10.1088/1674-1137/33/S1/051
46 Yu. A. Litvinov, H. Geissel, T. Radon, F. Attallah, G. Audi, et al., Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRSESR facility, Nucl. Phys. A 7563 (2005)
https://doi.org/10.1016/j.nuclphysa.2005.03.015
47 B. Sun, R. Knöbel, Yu. A. Litvinov, H. Geissel, J. Meng, et al., Nuclear structure studies of short-lived neutronrich nuclei with the novel large-scale isochronous mass spectrometry at the FRS-ESR facility, Nucl. Phys. A 8121 (2008)
https://doi.org/10.1016/j.nuclphysa.2008.08.013
48 A. Kankainen, V.-V. Elomaa, T. Eronen, D. Gorelov, J. Hakala, et al., Mass measurements in the vicinity of the doubly magic waiting point 56Ni, Phys. Rev. C 82034311 (2010)
https://doi.org/10.1103/PhysRevC.82.034311
49 X. L. Tu, Mass measurements of short-lived A= 2Z–1 nuclides at HIRFL-CSR, Ph D Thesis, University of Chinese Academy of Sciences, 2011
50 Y. H. Zhang, H. S. Xu, Yu. A. Litvinov, X. L. Tu, X. L. Yan, et al., Mass measurements of the neutrondeficient 41Ti, 45Cr, 49Fe, and 53Ni nuclides: First test of the isobaric multiplet mass equation in fp-Shell nuclei, Phys. Rev. Lett. 107, 102501 (2012)
https://doi.org/10.1103/PhysRevLett.109.102501
51 X. L. Yan, H. S. Xu, Yu. A. Litvinov, Y. H. Zhang, H. Schatz, et al., Mass measurement of 45Cr and its impact on the Ca-Sc cycle in X-ray bursts, Astrophys. J. Letters 766, L8 (2013)
https://doi.org/10.1088/2041-8205/766/1/L8
52 P. Shuai, H. S. Xu, Y. H. Zhang, Yu. A. Litvinov, M. Wang, et al., Accurate correction of magnetic field instabilities for high-resolution isochronous mass measurements in storage rings, arXiv: 1407.3459 [nucl-ex]
53 X. Xu, P. Zhang, P. Shuai, R. J. Chen, X. L. Yan, et al., Identification of the lowest T= 2, Jπ= 0+ isobaric analog state in 52Co and its impact on the understanding of β-decay properties of 52Ni, Phys. Rev. Lett. 117, 182503 (2016)
https://doi.org/10.1103/PhysRevLett.117.182503
54 Y. M. Xing, K. A. Li, Y. H. Zhang, X. H. Zhou, M. Wang, et al., Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on γpand νpnucleosynthesis processes, Phys. Lett. B 781, 358 (2018)
https://doi.org/10.1016/j.physletb.2018.04.009
55 C. Y. Fu, Y. H. Zhang, X. H. Zhou, M. Wang, Yu. A. Litvinov, et al., Masses of the Tz= −3/2 nuclei 27P and 29S, Phys. Rev. C 98, 014315 (2018)
https://doi.org/10.1103/PhysRevC.98.014315
56 R. J. Chen, X. L. Yan, W. W. Ge, Y. J. Yuan, M. Wang, , A method to measure the transition energy γtof the isochronously tuned storage ring, Nucl. Instrum. Meth. A 898, 111 (2018)
https://doi.org/10.1016/j.nima.2018.04.056
57 X. Xu, M. Wang, P. Shuai, R. J. Chen, X. L. Yan, et al., A data analysis method for isochronous mass spectrometry usingtwo time-of-flight detectors at CSRe, Chin. Phys. C 39, 106201 (2015)
https://doi.org/10.1088/1674-1137/39/10/106201
58 P. Shuai, X. Xu, Y. H. Zhang, H. S. Xu, Yu. A. Litvinov, et al., An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors, Nucl. Instrum. Methods Phys. Res. B 376, 311 (2016)
https://doi.org/10.1016/j.nimb.2016.02.006
59 W. Zhang, X. L. Tu, M. Wang, Y. H. Zhang, H. S. Xu, et al., Time-of-flight detectors with improved timing performance for isochronous mass measurements at the CSRe, Nucl. Instrum. Meth. A 756, 1 (2014)
https://doi.org/10.1016/j.nima.2014.04.051
60 Y. M. Xing, M. Wang, Y. H. Zhang, P. Shuai, X. Xu, et al., First isochronous mass measurements with two time-of-flight detectors at CSRe, Phys. Scr. 2015, 014010 (2015)
https://doi.org/10.1088/0031-8949/2015/T166/014010
61 W. R. Phillips, I. Ahmad, D. W. Banes, B. G. Glagola, W. Henning, W. Kutschera, K. E. Rehm, J. P. Schiffer, and T. F. Wang, Charge-state dependence of nuclear lifetimes, Phys. Rev. Lett. 62, 1025 (1989)
https://doi.org/10.1103/PhysRevLett.62.1025
62 M. Jung, F. Bosch, K. Beckert, H. Eickhoff, H. Folger, et al., First observation of bound-state β-decay, Phys. Rev. Lett. 69, 2164 (1992)
https://doi.org/10.1103/PhysRevLett.69.2164
63 F. Attallah, M. Aiche, J. F. Chemin, J. N. Scheurer, W. E. Meyerhof, J. P. Grandin, P. Aguer, G. Bogaert, J. Kiener, A. Lefebvre, J. P. Thibaud, and C. Grunberg, Charge state blocking of K-shell internal conversion in 125Te, Phys. Rev. Lett. 75, 1715 (1995)
https://doi.org/10.1103/PhysRevLett.75.1715
64 H. Irnich, H. Geissel, F. Nolden, K. Beckert, F. Bosch, et al., Half-life measurements of bare, mass-resolved isomers in a storage-cooler ring, Phys. Rev. Lett. 75, 4182 (1995)
https://doi.org/10.1103/PhysRevLett.75.4182
65 F. Bosch, T. Faestermann, J. Friese, F. Heine, P. Kienle, et al., Observation of bound-state β-decay of fully ionized 187Re: 187Re-187Os cosmochronometry, Phys. Rev. Lett. 77, 5190 (1996)
https://doi.org/10.1103/PhysRevLett.77.5190
66 T. Ohtsubo, F. Bosch, H. Geissel, L. Maier, C. Scheidenberger, et al., Simultaneous measurement of β-decay to bound and continuum electron states, Phys. Rev. Lett. 95, 052501 (2005)
https://doi.org/10.1103/PhysRevLett.95.052501
67 Yu. A. Litvinov, F. Bosch, H. Geissel, J. Kurcewicz, Z. Patyk, et al., Measurement of the β+ and orbital electron-capture decay rates in fully ionized, hydrogenlike, and heliumlike 140Pr Ions, Phys. Rev. Lett. 99, 262501 (2007)
https://doi.org/10.1103/PhysRevLett.99.262501
68 Yu. A. Litvinov, F. Bosch, N. Winckler, D. Boutin, H. G. Essel, et al., Observation of non-exponential orbital electron capture decays of hydrogen-like 140Pr and 142Pm ions, Phys. Lett. B 664, 162 (2008)
https://doi.org/10.1016/j.physletb.2008.04.062
69 P. Kienle (for the Two-Body-Weak-Decays Collaboration), High-resolution measurement of the timemodulated orbital electron capture and of the β+ decay of hydrogen-like 142Pm60+ ions, Phys. Lett. B 726, 638 (2013)
https://doi.org/10.1016/j.physletb.2013.09.033
70 J. N. Bahcall, Beta decay in stellar interiors, Phys. Rev. 126, 1143 (1962)
https://doi.org/10.1103/PhysRev.126.1143
71 Q. Zeng, M. Wang, X. H. Zhou, Y. H. Zhang, X. L. Tu, et al., Half-life measurement of short-lived 94m44 Ru44+ using isochronous mass spectrometry, Phys. Rev. C 96, 031303 (2017)
https://doi.org/10.1103/PhysRevC.96.031303
72 R. J. Chen, Y. J. Yuan, M. Wang, X. Xu, P. Shuai, et al., Simulations of the isochronous mass spectrometry at the HIRFL-CSR, Phys. Scr. 2015, 014044 (2015)
https://doi.org/10.1088/0031-8949/2015/T166/014044
73 X. C. Chen, Q. Zeng, Yu. A. Litvinov, X. L. Tu, P. M. Walker, M. Wang, Q. Wang, K. Yue, and Y. H. Zhang, Statistical approaches to lifetime measurements with restricted observation times, Phys. Rev. C 96, 034302 (2017)
https://doi.org/10.1103/PhysRevC.96.034302
74 X. L. Tu, H. S. Xu, M. Wang, Y. H. Zhang, Yu. A. Litvinov, et al., Direct mass measurements of shortlived A= 2Z–1 nuclides 63Ge, 65As, 67Se, and 71Kr and their impact on nucleosynthesis in the rpprocess, Phys. Rev. Lett. 106, 112501 (2011)
https://doi.org/10.1103/PhysRevLett.106.112501
75 P. Shuai, H. S. Xu, X. L. Tu, Y. H. Zhang, B. H. Sun, et al., Charge and frequency resolved isochronous mass spectrometry and the mass of 51Co, Phys. Lett. B 735, 327 (2014)
https://doi.org/10.1016/j.physletb.2014.06.046
76 E. P. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei, Phys. Rev. 51, 106 (1937)
https://doi.org/10.1103/PhysRev.51.106
77 E. P. Wigner, in: Proc. of the R. A. Welch Foundation Conf. on Chemical Research, Houston, edited by W. O. Milligan (R. A. Welch Foundation, Houston, 1957), Vol. 1
78 S. Weinberg and S. B. Treiman, Electromagnetic Corrections to isotopic spin conservation, Phys. Rev. 116, 465 (1959)
https://doi.org/10.1103/PhysRev.116.465
79 M. B. Bennett, C. Wrede, B. A. Brown, S. N. Liddick, D. Pérez-Loureiro, et al., Isobaric multiplet mass equation in the A= 31, T= 3/2 quartets, Phys. Rev. C 93, 064310 (2016)
https://doi.org/10.1103/PhysRevC.93.064310
80 M. MacCormick and G. Audi, Evaluated experimental isobaric analogue states from T= 1/2 to T= 3 and associated IMME coefficients, Nucl. Phys. A 925, 61 (2014)
https://doi.org/10.1016/j.nuclphysa.2014.01.007
81 A. T. Gallant, M. Brodeur, C. Andreoiu, A. Bader, A. Chaudhuri, et al., Breakdown of the isobaric multiplet mass equation for the A= 20 and 21 multiplets, Phys. Rev. Lett. 113, 082501 (2014)
https://doi.org/10.1103/PhysRevLett.113.082501
82 A. Kankainen, L. Canete, T. Eronen, J. Hakala, A. Jokinen, J. Koponen, I. D. Moore, D. Nesterenko, J. Reinikainen, S. Rinta-Antila, A. Voss, and J. Äystö, Mass of astrophysically relevant 31Cl and the breakdown of the isobaric multiplet mass equation, Phys. Rev. C 93, 041304(R) (2016)
83 R. Ringle, T. Sun, G. Bollen, D. Davies, M. Facina, J. Huikari, E. Kwan, D. J. Morrissey, A. Prinke, J. Savory, P. Schury, S. Schwarz, and C. S. Sumithrarachchi, Highprecision Penning trap mass measurements of 37,38Ca and their contributions to conserved vector current and isobaric mass multiplet equation, Phys. Rev. C 75, 055503 (2007)
https://doi.org/10.1103/PhysRevC.75.055503
84 C. Yazidjian, G. Audi, D. Beck, K. Blaum, S. George, C. Guenaut, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, D. Lunney, and L. Schweikhard, Evidence for a breakdown of the isobaric multiplet mass equation: A study of the A= 35, T= 3/2 isospin quartet, Phys. Rev. C 76, 024308 (2007)
https://doi.org/10.1103/PhysRevC.76.024308
85 A. Saastamoinen, T. Eronen, A. Jokinen, V.-V. Elomaa, J. Hakala, A. Kankainen, I. D. Moore, S. Rahaman, J. Rissanen, C. Weber, J. Äystö, and L. Trache, Mass of 23Al for testing the isobaric multiplet mass equation, Phys. Rev. C 80, 044330 (2009)
https://doi.org/10.1103/PhysRevC.80.044330
86 A. Kankainen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, V. S. Kolhinen, M. Reponen, J. Rissanen, A. Saastamoinen, V. Sonnenschein, and J. Äystö, Highprecision mass measurement of 31S with the double Penning trap JYFLTRAP improves the mass value for 32Cl, Phys. Rev. C 82, 052501(R) (2010)
87 J. Su, W. P. Liu, N. T. Zhang, Y. P. Shen, Y. H. Lam, et al., Revalidation of the isobaric multiplet mass equation at A= 53, T= 3/2, Phys. Lett. B 756, 323 (2016)
https://doi.org/10.1016/j.physletb.2016.03.024
88 C. Dossat, N. Adimi, F. Aksouh, F. Becker, A. Bey, et al., The decay of proton-rich nuclei in the mass A= 36–56 region, Nucl. Phys. A 792, 18 (2007)
https://doi.org/10.1016/j.nuclphysa.2007.05.004
89 S. E. A. Orrigo, B. Rubio, Y. Fujita, W. Gelletly, J. Agramunt, et al., βdecay of the exotic Tz= –2 nuclei 48Fe, 52Ni, and 56Zn, Phys. Rev. C 93, 044336 (2016)
https://doi.org/10.1103/PhysRevC.93.044336
90 G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, The NUBASE2016 evaluation of nuclear properties, Chin. Phys. C 41, 030001 (2017)
https://doi.org/10.1088/1674-1137/41/3/030001
91 M. A. Bentley and S. M. Lenzi, Coulomb energy differences between high-spin states in isobaric multiplets, Prog. Part. Nucl. Phys. 59, 497 (2007)
https://doi.org/10.1016/j.ppnp.2006.10.001
92 W. Benenson and E.Kashy, Isobaric quartets in nuclei, Rev. Mod. Phys. 51, 527 (1979)
https://doi.org/10.1103/RevModPhys.51.527
93 Y. H. Lam, N. A. Smirnova, and E. Caurier, Isospin nonconservation in sd-shell nuclei, Phys. Rev. C 87, 054304 (2013)
https://doi.org/10.1103/PhysRevC.87.054304
94 P. Möller and J. R. Nix, Nuclear masses from a unified macroscopic-model, At. Data Nucl. Data Tables 39, 213 (1988)
https://doi.org/10.1016/0092-640X(88)90022-8
95 M. Goeppert-Mayer, On closed shells in nuclei (II), Phys. Rev. 75, 1969 (1949)
https://doi.org/10.1103/PhysRev.75.1969
96 I. Talmi, The shell model – Successes and limitations, Nucl. Phys. A 507, 295 (1990)
https://doi.org/10.1016/0375-9474(90)90585-A
97 F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, et al., Masses of exotic calcium isotopes pin down nuclear forces, Nature 498, 346 (2013)
https://doi.org/10.1038/nature12226
98 F. Sarazin, H. Savajols, W. Mittig, F. Nowacki, N. A. Orr, et al., Shape coexistence and the N= 28 shell closure far from stability, Hyperfine Interactions 132, 147 (2001)
https://doi.org/10.1023/A:1011912400725
99 A. Gade, R. V. F. Janssens, D. Bazin, R. Broda, B. A. Brown, et al., Cross-shell excitation in two-proton knockout: Structure of 52Ca, Phys. Rev. C 74, 021302 (2006)
https://doi.org/10.1103/PhysRevC.74.021302
100 R. V. F. Janssens, B. Fornal, P. F. Mantica, B. A. Brown, R. Broda, et al., Structure of 52,54Ti and shell closures in neutron-rich nuclei above 48Ca, Phys. Lett. B 546, 55 (2002)
https://doi.org/10.1016/S0370-2693(02)02682-5
101 J. I. Prisciandaro, P. F. Mantica, B. A. Brown, D. W. Anthony, M. W. Cooper, et al., New evidence for a subshell gap at N= 32, Phys. Lett. B 510, 17 (2001)
https://doi.org/10.1016/S0370-2693(01)00565-2
102 A. T. Gallant, J. C. Bale, T. Brunner, U. Chowdhury, S. Ettenauer, et al., New Precision Mass Measurements of Neutron-Rich Calcium and Potassium Isotopes and Three-Nucleon Forces, Phys. Rev. Lett. 109, 032506 (2012)
https://doi.org/10.1103/PhysRevLett.109.032506
103 M. Wang, G. Audi, A. Wapstra, F. Kondev, M. Mac-Cormick, X. Xu, and B. Pfeiffer, The AME2012 atomic mass evaluation (II): Tables, graphs and references, Chin. Phys. C 36, 1603 (2012)
https://doi.org/10.1088/1674-1137/36/12/003
104 P. Möller, J. Nix, W. D. Myers, and W. J. Swiatecki, Nuclear ground-state masses and deformations, At. Data Nucl. Data Tables 59, 185 (1995)
https://doi.org/10.1006/adnd.1995.1002
105 H. Schatz, A. Aprahamian, J. Görres, M. Wiescher, T. Rauscher, J. F. Rembges, F.-K. Thielemann, B. Pfeiffer, P. Möller, K.-L. Kratz, H. Herndl, B. A. Brown, and H. Rebel, rp-process nucleosynthesis at extreme temperature and density conditions, Phys. Rep. 294, 167 (1998)
https://doi.org/10.1016/S0370-1573(97)00048-3
106 E. Haettner, D. Ackermann, G. Audi, K. Blaum, M. Block, et al., Mass measurements of very neutrondeficient Mo and Tc isotopes and their impact on rpprocess nucleosynthesis, Phys. Rev. Lett. 106, 122501 (2011)
https://doi.org/10.1103/PhysRevLett.106.122501
107 H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F.-K. Thielemann, and M. Wiescher, End Point of the rpProcess on Accreting Neutron Stars, Phys. Rev. Lett. 86, 3471 (2001)
https://doi.org/10.1103/PhysRevLett.86.3471
108 A. A. Valverde, M. Brodeur, G. Bollen, M. Eibach, K. Gulyuz, A. Hamaker, C. Izzo, W.-J. Ong, D. Puentes, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, C. S. Sumithrarachchi, J. Surbrook, A. C. C. Villari, and I. T. Yandow, High-precision mass measurement of 56Cu and the redirection of the rp-process flow, Phys. Rev. Lett. 120, 032701 (2018)
https://doi.org/10.1103/PhysRevLett.120.032701
109 J. C. Hardy and I. S. Towner, New limits on fundamental weak-interaction parameters from superallowed β decay, Phys. Rev. Lett. 94, 092502 (2005)
https://doi.org/10.1103/PhysRevLett.94.092502
110 J. C. Hardy and I. S.Towner, Superallowed 0+→0+ nuclear βdecays: 2014 critical survey, with precise results for Vud and CKM unitarity, Phys. Rev. C 91, 025501 (2015)
https://doi.org/10.1103/PhysRevC.91.025501
111 F. Molina, B. Rubio, Y. Fujita, W. Gelletly, J. Agramunt, et al., Tz=–1→0 β decays of 54Ni, 50Fe, 46Cr, and 42Ti and comparison with mirror (3He, t) measurements, Phys. Rev. C 91, 014301 (2015)
https://doi.org/10.1103/PhysRevC.91.014301
112 I. S. Towner and J. C. Hardy, Theoretical corrections and world data for the superallowed ft values in the βdecays of 42Ti, 46Cr, 50Fe, and 54Ni, Phys. Rev. C 92, 055505 (2015)
https://doi.org/10.1103/PhysRevC.92.055505
113 M. Wang, H. S. Xu, Y. H. Zhang, X. L. Tu, Yu. A. Litvinov and CSRe collaboration, Mass measurement of short-lived nuclei at HIRFL-CSR, EPJ Web of Conferences 66, 02107 (2014)
114 J. C. Yang, J. W. Xia, G. Q. Xiao, H. S. Xu, H. W. Zhao, et al., High Intensity heavy ion Accelerator Facility (HIAF) in China, Nucl. Instrum. Methods Phys. Res. B 317, 263 (2013)
https://doi.org/10.1016/j.nimb.2013.08.046
115 X. Ma, W. Q. Wen, S. F. Zhang, D. Y. Yu, R. Cheng, et al., HIAF: New opportunities for atomic physics with highly charged heavy ions, Nucl. Instrum. Methods Phys. Res. B 408, 169 (2017)
https://doi.org/10.1016/j.nimb.2017.03.129
116 Z. J. Wang, Proceedings of LINAC2012, Tel-Aviv, Israel, TUPB039
117 B. Wu, J. C. Yang, J. W. Xia, X. L. Yan, X. J. Hu, et al., HIAF: New opportunities for atomic physics with highly charged heavy ions, Nucl. Instrum. Methods Phys. Res. B 408, 169 (2017)
https://doi.org/10.1016/j.nimb.2017.03.129
118 Yu. A. Litvinov and F. Bosch, Beta decay of highly charged ions, Rep. Prog. Phys. 74, 016301 (2011)
https://doi.org/10.1088/0034-4885/74/1/016301
119 T. Stöhlker, Yu. A. Litvinov, and A. Bräuning-Demian, M. Lestinsky, F. Herfurth, R. Maier, D. Prasuhn, R. Schuch, M. Steck, for the SPARC Collaboration, SPARC collaboration: New strategy for storage ring physics at FAIR, Hyperfine Interact 227, 45 (2014)
https://doi.org/10.1007/s10751-014-1047-2
120 P. M. Walker, Yu. A. Litvinov, and H. Geissel, The ILIMA project at FAIR, Int. J. Mass Spectr.349–350, 247 (2013)
https://doi.org/10.1016/j.ijms.2013.04.007
121 T. Yamaguchia, Y. Yamaguchi, and A. Ozawa, The challenge of precision mass measurements of short-lived exotic nuclei: Development of a new storage ring mass spectrometry, Int. J. Mass Spectr.349–350, 240 (2013)
https://doi.org/10.1016/j.ijms.2013.04.027
122 M. Grieser, Yu. A. Litvinov, R. Raabe, K. Blaum, Y. Blumenfeld, et al., Storage ring at HIE-ISOLDE, Eur. Phys. J.: Spec. Top. 207, 1 (2012)
https://doi.org/10.1140/epjst/e2012-01599-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed