Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (6): 132110   https://doi.org/10.1007/s11467-018-0846-3
  本期目录
Alpha-clustering effects in heavy nuclei
Zhongzhou Ren1(), Bo Zhou2()
1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2. Institute for International Collaboration, Hokkaido University, Sapporo 060-0815, Japan
 全文: PDF(3089 KB)  
Abstract

The study of cluster structures in light nuclei is extending to the heavy nuclei in these years. As for the stable N = Z nuclei, from the lighter 8Be, 12C nuclei to the heavier 20Ne and even the 40Ca and 44Ti medium nuclei, the α cluster structures have been well studied and confirmed. In heavy nuclei, due to the dominated mean field, the existence of α cluster structure is not clear as light nuclei but some clues were found for indicating the core+α cluster structure in some nuclei, in particular, the 208Pb+α structure in 212Po. We review some recent progress about the theoretical and experimental explorations of the α-clustering effects in heavy nuclei. We also discuss the possible α cluster structure of heavy nuclei from the view of α decay.

Key wordsα cluster structure    nuclear cluster model    α correlations    α decay
收稿日期: 2018-07-31      出版日期: 2018-12-13
Corresponding Author(s): Zhongzhou Ren,Bo Zhou   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(6): 132110.
Zhongzhou Ren, Bo Zhou. Alpha-clustering effects in heavy nuclei. Front. Phys. , 2018, 13(6): 132110.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0846-3
https://academic.hep.com.cn/fop/CN/Y2018/V13/I6/132110
1 K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus, Vieweg, 1977
https://doi.org/10.1007/978-3-322-85255-7
2 H. Horiuchi, K. Ikeda, and Y. Suzuki, Molecule-like structures in nuclear system, Prog. Theor. Phys. Suppl. 52, 89 (1972)
https://doi.org/10.1143/PTPS.52.89
3 H. Horiuchi, K. Ikeda, and K. Katō, Recent developments in nuclear cluster physics, Prog. Theor. Phys. Suppl. 192, 1 (2012)
https://doi.org/10.1143/PTPS.192.1
4 M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U.-G. Meisner, Microscopic clustering in nuclei, arXiv: 170506192 (2017)
5 W. Wefelmeier, Ein geometrisches Modell des Atomkerns, Z. Für Phys. Hadrons Nucl. 107, 332 (1937)
6 K. Ikeda, N. Takigawa, and H. Horiuchi, The systematic structure-change into the molecule-like structures in the self-conjugate 4n nuclei, Prog. Theor. Phys. Suppl. E68, 464 (1968)
https://doi.org/10.1143/PTPS.E68.464
7 H. Horiuchi, Kernels of GCM, RGM and OCM and their calculation methods, Prog. Theor. Phys. Suppl. 62, 90 (1977)
https://doi.org/10.1143/PTPS.62.90
8 Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, et al., Comprehensive study of alpha-nuclei, Prog. Theor. Phys. Suppl. 68, 29 (1980)
https://doi.org/10.1143/PTPS.68.29
9 M. Freer and H. O. U. Fynbo, The Hoyle state in 12C, Prog. Part. Nucl. Phys. 78, 1 (2014)
https://doi.org/10.1016/j.ppnp.2014.06.001
10 A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Alpha cluster condensation in 12C and 16O, Phys. Rev. Lett. 87, 192501 (2001)
https://doi.org/10.1103/PhysRevLett.87.192501
11 Y. Funaki, H. Horiuchi, and A. Tohsaki, Cluster models from RGM to alpha condensation and beyond, Prog. Part. Nucl. Phys. 82, 78 (2015)
https://doi.org/10.1016/j.ppnp.2015.01.001
12 T. Yamada, Y. Funaki, H. Horiuchi, G. Röpke, et al., Criterion for Bose–Einstein condensation in traps and self-bound systems, Phys. Rev. A 78, 035603 (2008)
https://doi.org/10.1103/PhysRevA.78.035603
13 A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Colloquium status of alpha-particle condensate structure of the Hoyle state, Rev. Mod. Phys. 89, 011002 (2017)
https://doi.org/10.1103/RevModPhys.89.011002
14 Y. Kanada-En’yo and H. Horiuchi, Clustering in yrast States of 20Ne studied with antisymmetrized molecular dynamics, Prog. Theor. Phys. 93, 115 (1995)
https://doi.org/10.1143/ptp/93.1.115
15 M. Kimura, T. Suhara, and Y. Kanada-En’yo, Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei, Eur. Phys. J. A 52, 373 (2016)
https://doi.org/10.1140/epja/i2016-16373-9
16 H. Feldmeier, Fermionic molecular dynamics, Nucl. Phys. A 515, 147 (1990)
https://doi.org/10.1016/0375-9474(90)90328-J
17 T. Neff and H. Feldmeier, Cluster structures within fermionic molecular dynamics, Nucl. Phys. A 738, 357 (2004)
https://doi.org/10.1016/j.nuclphysa.2004.04.061
18 C. Beck (Ed.), Clusters in Nuclei, Lecture Notes in Physics, Springer, Heidelberg; New York, 2010
https://doi.org/10.1007/978-3-642-13899-7
19 B. Zhou, A. Tohsaki, H. Horiuchi, and Z. Ren, Breathing-like excited state of the Hoyle state in 12C, Phys. Rev. C 94, 044319 (2016)
https://doi.org/10.1103/PhysRevC.94.044319
20 Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, et al., Resonance states in 12C and alpha-particle condensation, Eur. Phys. J. A 24, 321 (2005)
https://doi.org/10.1140/epja/i2004-10238-x
21 Y. Kanada-En’yo, M. Kimura, and A. Ono, Antisymmetrized molecular dynamics and its applications to cluster phenomena, Prog. Theor. Exp. Phys.2012 (2012)
22 T. Yamaya, K. Katori, M. Fujiwara, S. Kato, and S. Ohkubo, Alpha-cluster study of 40Ca and 44Ti by the (6Li, d) reaction, Prog. Theor. Phys. 132, 73 (1998)
https://doi.org/10.1143/PTPS.132.73
23 T. Sakuda and S. Ohkubo, Microscopic study of coexistence of alpha-cluster and shell-model structure in the 40Ca-44Ti region, Prog. Theor. Phys. 132, 103 (1998)
https://doi.org/10.1143/PTPS.132.103
24 R. D. Lawson, Theory of the Nuclear Shell Model, Clarendon Press, 1980
25 R. G. Lovas, R. J. Liotta, A. Insolia, K. Varga, and D. S. Delion, Microscopic theory of cluster radioactivity, Phys. Rep. 294, 265 (1998)
https://doi.org/10.1016/S0370-1573(97)00049-5
26 I. Tonozuka and A. Arima, Surface α-clustering and α-decays of 212Po, Nucl. Phys. A 323, 45 (1979)
https://doi.org/10.1016/0375-9474(79)90415-9
27 A. Astier, P. Petkov, M.-G. Porquet, D. S. Delion, et al., Novel manifestation of ensuremath alpha-clustering structures: New α+208Pb states in 212Po revealed by their enhanced E1 decays, Phys. Rev. Lett. 104, 042701 (2010)
https://doi.org/10.1103/PhysRevLett.104.042701
28 Z. Ren, C. Xu, and Z. Wang, New perspective on complex cluster radioactivity of heavy nuclei, Phys. Rev. C 70, 034304 (2004)
https://doi.org/10.1103/PhysRevC.70.034304
29 J. Zhang, W. Rae, and A. Merchant, Systematics of some 3-dimensional alpha-cluster configurations in 4n nuclei from 16O to 44Ti, Nucl. Phys. A 575, 61 (1994)
https://doi.org/10.1016/0375-9474(94)90137-6
30 S. i. Koh, Many-body approach to the alpha-correlation inside of the heavy nuclei, Prog. Theor. Phys. Suppl. 132, 197 (1998)
https://doi.org/10.1143/PTPS.132.197
31 A. Tohsaki and N. Itagaki, Alpha clustering with a hollow structure: Geometrical structure of alpha clusters from platonic solids to fullerene shape, Phys. Rev. C 97, 011301 (2018)
https://doi.org/10.1103/PhysRevC.97.011301
32 N. Takigawa and A. Arima, Structure of 12C, Nucl. Phys. A 168, 593 (1971)
https://doi.org/10.1016/0375-9474(71)90549-5
33 K. Ikeda, T. Marumori, R. Tamagaki, and H. Tanaka, Formation of the Viewpoint, Alpha-like four-body correlations and molecular aspects in nuclei, Prog. Theor. Phys. Suppl. 52, 1 (1972)
https://doi.org/10.1143/PTPS.52.1
34 Y. Kanada-En’yo, M. Kimura, and H. Horiuchi, Antisymmetrized molecular dynamics: A new insight into the structure of nuclei, Comp. Rend. Phys. 4, 497 (2003)
https://doi.org/10.1016/S1631-0705(03)00062-8
35 M. Kimura, Cluster states in stable and unstable nuclei, arXiv: 1612.02086 (2016)
36 T. Matsuse, M. Kamimura, and Y. Fukushima, Study of the alpha-clustering structure of 20Ne based on the resonating group method for 20O+α, Prog. Theor. Phys. 53, 706 (1975)
https://doi.org/10.1143/PTP.53.706
37 B. Zhou, Z. Ren, C. Xu, Y. Funaki, et al., New concept for the ground-state band in 20Ne within a microscopic cluster model, Phys. Rev. C 86, 014301 (2012)
https://doi.org/10.1103/PhysRevC.86.014301
38 J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, How atomic nuclei cluster, Nature 487, 341 (2012)
https://doi.org/10.1038/nature11246
39 H. Horiuchi and K. Ikeda, A molecule-like structure in atomic nuclei of 16O* and 20Ne, Prog. Theor. Phys. 40, 277 (1968)
https://doi.org/10.1143/PTP.40.277
40 A. Arima and S. Yoshida, Alpha-decay widths of 20Ne, Phys. Lett. B 40, 15 (1972)
https://doi.org/10.1016/0370-2693(72)90269-9
41 B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, et al., Nonlocalized cluster dynamics and nuclear molecular structure, Phys. Rev. C 89, 034319 (2014)
https://doi.org/10.1103/PhysRevC.89.034319
42 P. Chattopadhyay and R. M. Dreizler, Numerical aspects of angular momentum projection for rotational nuclei, Nucl. Phys. A 321, 62 (1979)
https://doi.org/10.1016/0375-9474(79)90685-7
43 P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer Science & Business Media, 2004
44 B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, et al., Nonlocalized clustering: A new concept in nuclear cluster structure physics, Phys. Rev. Lett. 110, 262501 (2013)
https://doi.org/10.1103/PhysRevLett.110.262501
45 Y. Funaki, T. Yamada, E. Hiyama, B. Zhou, et al., Container structure of alpha-alpha-lambda clusters in 9-lambda-beryrium, Prog. Theor. Exp. Phys. 2014, 113D01 (2014)
46 B. Zhou, Y. Funaki, A. Tohsaki, H. Horiuchi, et al., The container picture with two-alpha correlation for the ground state of 12C, Prog. Theor. Exp. Phys. 2014, 101D01 (2014)
47 M. Lyu, Z. Ren, B. Zhou, Y. Funaki, et al., Investigation of 9Be from a nonlocalized clustering concept, Phys. Rev. C 91, 014313 (2015)
https://doi.org/10.1103/PhysRevC.91.014313
48 M. Lyu, Z. Ren, B. Zhou, Y. Funaki, et al., Investigation of 10Be and its cluster dynamics with the nonlocalized clustering approach, Phys. Rev. C 93, 054308 (2016)
https://doi.org/10.1103/PhysRevC.93.054308
49 B. Zhou, New trial wave function for the nuclear cluster structure of nuclei, Prog. Theor. Exp. Phys. 2018, 041D01 (2018)
50 S. Ohkubo and K. Umehara, Inversion doublet Kπ= 0– band with the alpha+36Ar cluster structure in 40Ca, Prog. Theor. Phys. 80, 598 (1988)
https://doi.org/10.1143/PTP.80.598
51 Y. Taniguchi, M. Kimura, Y. Kanada-En’yo, and H. Horiuchi, Clustering and triaxial deformations of 40Ca, Phys. Rev. C 76, 044317 (2007)
https://doi.org/10.1103/PhysRevC.76.044317
52 T. Yamaya, M. Saitoh, M. Fujiwara, T. Itahashi, K. Katori, T. Suehiro, S. Kato, S. Hatori, and S. Ohkubo, Cluster structure in 40Ca via the α-transfer reaction, Nucl. Phys. A 573, 154 (1994)
https://doi.org/10.1016/0375-9474(94)90019-1
53 T. Wada and H. Horiuchi, Resonating-group-method study of alpha+40Ca elastic scattering and 44Ti structure, Phys. Rev. C 38, 2063 (1988)
https://doi.org/10.1103/PhysRevC.38.2063
54 F. Michel, S. Ohkubo, and G. Reidemeister, Local potential approach to the alpha-nucleus interaction and alpha-cluster structure in nuclei, Prog. Theor. Phys. Suppl. 132, 7 (1998)
https://doi.org/10.1143/PTPS.132.7
55 M. Kimura and H. Horiuchi, Coexistence of cluster structure and superdeformation in 44Ti, Nucl. Phys. A 767, 58 (2006)
https://doi.org/10.1016/j.nuclphysa.2005.12.006
56 R. R. Betts, Resonances in heavy ion collisions — Nuclear structure at large deformations, Nucl. Phys. A 447, 257 (1986)
https://doi.org/10.1016/0375-9474(86)90613-5
57 E. Uegaki, Molecular resonances in medium-weight nuclei, Prog. Theor. Phys. 132, 135 (1998)
https://doi.org/10.1143/PTPS.132.135
58 E. Uegaki and Y. Abe, Resonances in 28Si+28Si.I — dinuclear molecular model with axial asymmetry, Prog. Theor. Phys. 127, 831 (2012)
https://doi.org/10.1143/PTP.127.831
59 E. Uegaki and Y. Abe, Resonances in 28Si+28Si (II) — Analyses for the angular distributions and angular correlations, Prog. Theor. Phys. 127, 877 (2012)
https://doi.org/10.1143/PTP.127.877
60 S. Saito, Theory of resonating group method and generator coordinate method, and orthogonality condition model, Prog. Theor. Phys. Suppl. 62, 11 (1977)
https://doi.org/10.1143/PTPS.62.11
61 Z. Ren and G.-O. Xu, Evidence of alpha correlation from binding energies in medium and heavy nuclei, Phys. Rev. C 38, 1078 (1988)
https://doi.org/10.1103/PhysRevC.38.1078
62 M. Hasegawa, Alpha-like four-nucleon correlations viewed in single-particle mean field, Prog. Theor. Phys. 132, 177 (1998)
https://doi.org/10.1143/PTPS.132.177
63 M. Girod and P. Schuck, Alpha-particle clustering from expanding self-conjugate nuclei within the Hartree–Fock–Bogoliubov approach, Phys. Rev. Lett. 111, 132503 (2013)
https://doi.org/10.1103/PhysRevLett.111.132503
64 F. D. Becchetti, L. T. Chua, J. Jänecke, and A. M. VanderMolen, Systematics of the (d, 6Li) Reaction and alpha Clustering in Heavy Nuclei, Phys. Rev. Lett. 34, 225 (1975)
https://doi.org/10.1103/PhysRevLett.34.225
65 F. D. Becchetti and J. Jänecke, Neutron blocking in alpha-particle-transfer reactions, Phys. Rev. Lett. 35, 268 (1975)
https://doi.org/10.1103/PhysRevLett.35.268
66 Z. Ren and G.-O. Xu, Reduced alpha transfer rates in a schematic model, Phys. Rev. C 36, 456 (1987)
https://doi.org/10.1103/PhysRevC.36.456
67 B. Buck, J. C. A. C. Merchant, and S. M. Perez, Cluster model of alpha decay and 212Po, Phys. Rev. C 53, 2841 (1996)
https://doi.org/10.1103/PhysRevC.53.2841
68 C. Xu, Z. Ren, G. Röpke, P. Schuck, et al., alpha-decay width of 212Po from a quartetting wave function approach, Phys. Rev. C 93, 011306 (2016)
https://doi.org/10.1103/PhysRevC.93.011306
69 C. Xu, G. Röpke, P. Schuck, Z. Ren, et al., Alpha-cluster formation and decay in the quartetting wave function approach, Phys. Rev. C 95, 061306 (2017)
https://doi.org/10.1103/PhysRevC.95.061306
70 K. Varga, R. G. Lovas, and R. J. Liotta, Absolute alpha decay width of 212Po in a combined shell and cluster model, Phys. Rev. Lett. 69, 37 (1992)
https://doi.org/10.1103/PhysRevLett.69.37
71 G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, et al., Nuclear clusters bound to doubly magic nuclei: The case of 212Po, Phys. Rev. C 90, 034304 (2014)
https://doi.org/10.1103/PhysRevC.90.034304
72 G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, et al., Alpha decay width of 212Po from a quartetting wave function approach, J. Phys. Conf. Ser. 863, 012006 (2017)
https://doi.org/10.1088/1742-6596/863/1/012006
73 Y. Chiba, M. Kimura, and Y. Taniguchi, Isoscalar dipole transition as a probe for asymmetric clustering, Phys. Rev. C 93, 034319 (2016)
https://doi.org/10.1103/PhysRevC.93.034319
74 D. Brink, The Alpha-Particle Model of Light Nuclei, in International School of Physics Enrico Fermi, Course 37(in International School of Physics, 1966)
75 D. M. Brink, History of cluster structure in nuclei, J. Phys. Conf. Ser. 111, 012001 (2008)
https://doi.org/10.1088/1742-6596/111/1/012001
76 Y. Akaishi, S. A. Chin, Horiuchi, and K. Ikeda, Cluster Models and Other Topics, World Scientific, 1987
https://doi.org/10.1142/0248
77 A. Tohsaki and N. Itagaki, Coulomb energy of alphaparticle aggregates distributed on Archimedean solids, Phys. Rev. C 98, 014302 (2018)
https://doi.org/10.1103/PhysRevC.98.014302
78 A. Tohsaki, New effective internucleon forces in microscopic alpha-cluster model, Phys. Rev. C 49, 1814 (1994)
https://doi.org/10.1103/PhysRevC.49.1814
79 D. Brink and J. Castro, Alpha clustering effects in nuclear matter, Nucl. Phys. A 216, 109 (1973)
https://doi.org/10.1016/0375-9474(73)90521-6
80 A. Tohsaki-Suzuki, Microscopic study of alpha-cluster matter, Prog. Theor. Phys. 81, 370 (1989)
https://doi.org/10.1143/PTP.81.370
81 K. Wei and H. F. Zhang, Cluster preformation law for heavy and superheavy nuclei, Phys. Rev. C96 (2017)
https://doi.org/10.1103/PhysRevC.96.021601
82 Y. Qian and Z. Ren, New insight into α clustering of heavy nuclei via their α decay, Phys. Lett. B 777, 298 (2018)
https://doi.org/10.1016/j.physletb.2017.12.046
83 D. Ni and Z. Ren, Systematic calculation of α decay within a generalized density-dependent cluster model, Phys. Rev. C 81, 024315 (2010)
https://doi.org/10.1103/PhysRevC.81.024315
84 D. Ni and Z. Ren, Theoretical description of fine structure in the ensuremath alpha decay of heavy odd-odd nuclei, Phys. Rev. C 87, 027602 (2013)
https://doi.org/10.1103/PhysRevC.87.027602
85 Y. Qian and Z. Ren, Systematic calculations on exotic α-decay half-lives of nuclei with N= 125, 126, 127, Nucl. Phys. A 852, 82 (2011)
https://doi.org/10.1016/j.nuclphysa.2011.01.007
86 C. Xu and Z. Ren, New deformed model of alpha-decay half-lives with a microscopic potential, Phys. Rev. C 73, 041301 (2006)
https://doi.org/10.1103/PhysRevC.73.041301
87 A. N. Andreyev, M. Huyse, P. Van Duppen, et al., Signatures of the Z= 82 Shell Closure in alpha Decay Process, Phys. Rev. Lett. 110, 242502 (2013)
https://doi.org/10.1103/PhysRevLett.110.242502
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed