Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (1): 13607   https://doi.org/10.1007/s11467-018-0854-3
  本期目录
Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy
Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓)(), Hai Li (李海)()
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
 全文: PDF(9649 KB)  
Abstract

Interlayer interactions at the heterointerfaces of van der Waals heterostructures (vdWHs), which consist of vertically stacked two-dimensional materials, play important roles in determining their properties. The interlayer interactions are tunable from noncoupling to strong coupling by controlling the twist angle between adjacent layers. However, the influence of stacking sequence and individual component thickness on the properties of vdWHs has rarely been explored. In this work, the influence of the stacking sequence of WSe2 and graphene in vdWHs of graphene-on-WSe2 (graphene/WSe2) or WSe2-on-graphene (WSe2/graphene), as well as their thickness, on their interlayer interaction was systematically investigated by ultralow-frequency (ULF) Raman spectroscopy. A series of ULF breathing modes of WSe2 nanosheets in these vdWHs were observed with frequencies highly dependent on graphene thickness. Interestingly, the ULF breathing modes of WSe2 red-shifted in graphene/WSe2 and WSe2/graphene configurations, and the amount of shift in the former was much larger than that in the latter. In contrast, no obvious ULF shift was observed by varying the twist angle between WSe2 and graphene. This indicates that the interlayer interaction is more sensitive to the stacking sequence compared with the twist angle. The results provide alternative approaches to modulate the interlayer interaction of vdWHs and, thus, tune their optical and optoelectronic properties.

Key wordsinterlayer interaction    van der Waals heterostructures    two-dimensional materials    stacking sequence    ultralow-frequency Raman breathing mode
收稿日期: 2018-07-20      出版日期: 2019-01-01
Corresponding Author(s): Xiao Huang (黄晓),Hai Li (李海)   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(1): 13607.
Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy. Front. Phys. , 2019, 14(1): 13607.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0854-3
https://academic.hep.com.cn/fop/CN/Y2019/V14/I1/13607
1 P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. F. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Q. Yan, D. G. Mandrus, W. Yao, and X. D. Xu, Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures, Nat. Commun. 6(1), 6242 (2015)
https://doi.org/10.1038/ncomms7242
2 A. Azizi, S. Eichfeld, G. Geschwind, K. Zhang, B. Jiang, D. Mukherjee, L. Hossain, A. F. Piasecki, B. Kabius, J. A. Robinson, and N. Alem, Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides, ACS Nano 9(5), 4882 (2015)
https://doi.org/10.1021/acsnano.5b01677
3 M. H. Chiu, M. Y. Li, W. Zhang, W. T. Hsu, W. H. Chang, M. Terrones, H. Terrones, and L. J. Li, Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking, ACS Nano 8(9), 9649 (2014)
https://doi.org/10.1021/nn504229z
4 H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)
https://doi.org/10.1073/pnas.1405435111
5 A. Nourbakhsh, A. Zubair, M. S. Dresselhaus, and T. Palacios, Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application, Nano Lett. 16(2), 1359 (2016)
https://doi.org/10.1021/acs.nanolett.5b04791
6 J. H. Yu, H. R. Lee, S. S. Hong, D. Kong, H. W. Lee, H. Wang, F. Xiong, S. Wang, and Y. Cui, Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers, Nano Lett. 15(2), 1031 (2015)
https://doi.org/10.1021/nl503897h
7 C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, Atomically thin p-n junctions with van der Waals heterointerfaces, Nat. Nanotechnol. 9(9), 676 (2014)
https://doi.org/10.1038/nnano.2014.150
8 L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Fieldeffect tunneling transistor based on vertical graphene heterostructures, Science 335(6071), 947 (2012)
https://doi.org/10.1126/science.1218461
9 W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials, Nat. Nanotechnol. 8(12), 952 (2013)
https://doi.org/10.1038/nnano.2013.219
10 H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, High responsivity and gate tunable graphene-MoS2 hybrid phototransistor, Small 10(11), 2300 (2014)
https://doi.org/10.1002/smll.201303670
11 H. Li, J. B. Wu, F. Ran, M. L. Lin, X. L. Liu, Y. Zhao, X. Lu, Q. Xiong, J. Zhang, W. Huang, H. Zhang, and P. H. Tan, Interfacial interactions in van der Waals heterostructures of MoS2 and graphene, ACS Nano 11(11), 11714 (2017)
https://doi.org/10.1021/acsnano.7b07015
12 Y. C. Lin, C. Y. Chang, R. K. Ghosh, J. Li, H. Zhu, R. Addou, B. Diaconescu, T. Ohta, X. Peng, N. Lu, M. J. Kim, J. T. Robinson, R. M. Wallace, T. S. Mayer, S. Datta, L. J. Li, and J. A. Robinson, Atomically thin heterostructures based on single-layer tungsten diselenide and graphene, Nano Lett. 14(12), 6936 (2014)
https://doi.org/10.1021/nl503144a
13 Q. Z. Li, L. P. Tang, C. X. Zhang, D. Wang, Q. J. Chen, Y. X. Feng, L. M. Tang, and K. Q. Chen, Seeking the dirac cones in the MoS2/WSe2 van der Waals heterostructure, Appl. Phys. Lett. 111(17), 171602 (2017)
https://doi.org/10.1063/1.4998305
14 F. Ullah, Y. Sim, C. T. Le, M. J. Seong, J. I. Jang, S. H. Rhim, B. C. Tran Khac, K. H. Chung, K. Park, Y. Lee, K. Kim, H. Y. Jeong, and Y. S. Kim, Growth and simultaneous valleys manipulation of two-dimensional MoSe2- WSe2 lateral heterostructure, ACS Nano 11(9), 8822 (2017)
https://doi.org/10.1021/acsnano.7b02914
15 C. Chakraborty, L. Y. Qiu, K. Konthasinghe, A. Mukherjee, S. Dhara, and N. Vamivakas, 3D Localized Trions in Monolayer WSe2 in a Charge Tunable van der Waals Heterostructure, Nano Lett. 18(5), 2859 (2018)
https://doi.org/10.1021/acs.nanolett.7b05409
16 K. W. Tang, W. H. Qi, Y. J. Li, and T. R. Wang, Electronic properties of van der Waals heterostructure of black phosphorus and MoS2, J. Phys. Chem. C 122(12), 7027 (2018)
https://doi.org/10.1021/acs.jpcc.8b01476
17 J. G. Roch, N. Leisgang, G. Froehlicher, P. Makk, K. Watanabe, T. Taniguchi, C. Schonenberger, and R. J. Warburton, Quantum-confined stark effect in a MoS2 monolayer van der Waals heterostructure, Nano Lett. 18(2), 1070 (2018)
https://doi.org/10.1021/acs.nanolett.7b04553
18 M. Okada, A. Kutana, Y. Kureishi, Y. Kobayashi, Y. Saito, T. Saito, K. Watanabe, T. Taniguchi, S. Gupta, Y. Miyata, B. I. Yakobson, H. Shinohara, and R. Kitaura, Direct and indirect interlayer excitons in a van der Waals heterostructure of hBN/WS2/MoS2/hBN, ACS Nano 12(3), 2498 (2018)
https://doi.org/10.1021/acsnano.7b08253
19 X. R. Hu, J. M. Zheng, and Z. Y. Ren, Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation, Front. Phys. 13(2), 137302 (2018)
https://doi.org/10.1007/s11467-017-0736-0
20 A. T. Hanbicki, H. J. Chuang, M. R. Rosenberger, C. S. Hellberg, S. V. Sivaram, K. M. McCreary, I. I. Mazin, and B. T. Jonker, Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure, ACS Nano 12(5), 4719 (2018)
https://doi.org/10.1021/acsnano.8b01369
21 T. Deilmann and K. S. Thygesen, Interlayer trions in the MoS2/WS2 van der Waals heterostructure, Nano Lett. 18(2), 1460 (2018)
https://doi.org/10.1021/acs.nanolett.7b05224
22 H. Yuan and Z. Li, Interfacial properties of black phosphorus/ transition metal carbide van der Waals heterostructures, Front. Phys. 13(3), 138103 (2018)
https://doi.org/10.1007/s11467-018-0759-1
23 Z. Z. Yan, Z. H. Jiang, J. P. Lu, and Z. H. Ni, Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure, Front. Phys. 13(4), 138115 (2018)
https://doi.org/10.1007/s11467-018-0785-z
24 T. C. Song, X. H. Cai, M. W. Y. Tu, X. O. Zhang, B. V. Huang, N. P. Wilson, K. L. Seyler, L. Zhu, T. Taniguchi, K. Watanabe, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, and X. D. Xu, Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures, Science 360(6394), 1214 (2018)
https://doi.org/10.1126/science.aar4851
25 R. Cheng, F. Wang, L. Yin, Z. Wang, Y. Wen, T. A. Shifa, and J. He, High-performance, multifunctional devices based on asymmetric van der Waals heterostructures, Nat. Electron. 1(6), 356 (2018)
https://doi.org/10.1038/s41928-018-0086-0
26 X. W. Zhang, D. W. He, J. Q. He, S. Q. Zhao, S. C. Hao, Y. S. Wang, and L. X. Yi, Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van der Waals heterostructure, Chin. Phys. B 26(9), 097202(2017)
https://doi.org/10.1088/1674-1056/26/9/097202
27 Y. Chen, Z. X. Fan, Z. C. Zhang, W. X. Niu, C. L. Li, N. L. Yang, B. Chen, and H. Zhang, Two-dimensional metal nanomaterials: Synthesis, properties, and applications, Chem. Rev. 118(13), 6409 (2018)
https://doi.org/10.1021/acs.chemrev.7b00727
28 H. Li, L. Ye, and J. B. Xu, High-performance broadband floating-base bipolar phototransistor based on WSe2/BP/MoS2 heterostructure, ACS Photon. 4(4), 823 (2017)
https://doi.org/10.1021/acsphotonics.6b00778
29 Z. Q. Li, C. Cheng, N. N. Dong, C. Romero, Q. M. Lu, J. Wang, J. R. V. de Aldana, Y. Tan, and F. Chen, Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure, Photon. Res. 5(5), 406 (2017)
https://doi.org/10.1364/PRJ.5.000406
30 Y. Liu, B. N. Shivananju, Y. S. Wang, Y. P. Zhang, W. Z. Yu, S. Xiao, T. Sun, W. L. Ma, H. R. Mu, S. H. Lin, H. Zhang, Y. R. Lu, C. W. Qiu, S. J. Li, and Q. L. Bao, Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure, ACS Appl. Mater. Interfaces 9(41), 36137 (2017)
https://doi.org/10.1021/acsami.7b09889
31 M. Will, M. Hamer, M. Muller, A. Noury, P. Weber, A. Bachtold, R. V. Gorbachev, C. Stampfer, and J. Guttinger, High quality factor graphene-based twodimensional heterostructure mechanical resonator, Nano Lett. 17(10), 5950 (2017)
https://doi.org/10.1021/acs.nanolett.7b01845
32 X. Yan, C. S. Liu, C. Li, W. Z. Bao, S. J. Ding, D. W. Zhang, and P. Zhou, Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor, Small 13(34), 1701478 (2017)
https://doi.org/10.1002/smll.201701478
33 L. Ye, P. Wang, W. J. Luo, F. Gong, L. Liao, T. D. Liu, L. Tong, J. F. Zang, J. B. Xu, and W. D. Hu, Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure, Nano Energy 37(37), 53 (2017)
https://doi.org/10.1016/j.nanoen.2017.05.004
34 W. Z. Yu, S. J. Li, Y. P. Zhang, W. L. Ma, T. Sun, J. Yuan, K. Fu, and Q. L. Bao, Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility, Small 13(24), 1700268 (2017)
https://doi.org/10.1002/smll.201700268
35 K. Zhang, X. Fang, Y. L. Wang, Y. Wan, Q. J. Song, W. H. Zhai, Y. P. Li, G. Z. Ran, Y. Ye, and L. Dai, Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure, ACS Appl. Mater. Interfaces 9(6), 5392 (2017)
https://doi.org/10.1021/acsami.6b14483
36 Y. Chen, X. D. Wang, G. J. Wu, Z. Wang, H. H. Fang, T. Lin, S. Sun, H. Shen, W. D. Hu, J. L. Wang, J. L. Sun, X. J. Meng, and J. H. Chu, High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure, Small 14(9), 1703293 (2018)
https://doi.org/10.1002/smll.201703293
37 B. Q. Luan, and R. H. Zhou, Spontaneous transport of single-stranded DNA through graphene-MoS2 heterostructure nanopores, ACS Nano 12(4), 3886 (2018)
https://doi.org/10.1021/acsnano.8b01297
38 H. Xu, X. Y. Han, X. Dai, W. Liu, J. Wu, J. T. Zhu, D. Y. Kim, G. F. Zou, K. A. Sablon, A. Sergeev, Z. Guo, and H. Liu, SK. A. ablon, A. Sergeev, Z. X. Guo and H. Y. Liu, High detectivity and transparent fewlayer MoS2/glassy-graphene heterostructure photodetectors, Adv. Mater. 30(13), 1706561 (2018)
https://doi.org/10.1002/adma.201706561
39 Y. Tan, X. B. Liu, Z. L. He, Y. R. Liu, M. W. Zhao, H. Zhang, and F. Chen, Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: Optical evidences and photonic applications, ACS Photon. 4(6), 1531 (2017)
https://doi.org/10.1021/acsphotonics.7b00296
40 X. Huang, Ch. L. Tan, Z. Y. Yin, and H. Zhang, Hybrid nanostructures based on two-dimensional nanomaterials, Adv. Mater. 26(14), 2185 (2014)
https://doi.org/10.1002/adma.201304964
41 J. Kim, V. Park, H. Jang, N. Koirala, J. B. Lee, U. J. Kim, H. S. Lee, Y. G. Roh, H. Lee, S. Sim, S. Cha, C. In, J. Park, J. Lee, M. Noh, J. Moon, M. Salehi, J. Sung, S. S. Chee, M. H. Ham, M. H. Jo, S. Oh, J. H. Ahn, S. W. Hwang, D. Kim, and H. Choi, Highly sensitive, gatetunable, room-temperature mid-infrared photodetection based on graphene-Bi2Se3 heterostructure, ACS Photon. 4(3), 482 (2017)
https://doi.org/10.1021/acsphotonics.6b00972
42 K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S. G. Louie, and F. Wang, Evolution of interlayer coupling in twisted molybdenum disulfide bilayers, Nat. Commun. 5(1), 4966 (2014)
https://doi.org/10.1038/ncomms5966
43 M. Baranowski, A. Surrente, L. Klopotowski, J. M. Urban, N. Zhang, D. K. Maude, K. Wiwatowski, S. Mackowski, Y. C. Kung, D. Dumcenco, A. Kis, and P. Plochocka, Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure, Nano Lett. 17(10), 6360 (2017)
https://doi.org/10.1021/acs.nanolett.7b03184
44 S. Huang, X. Ling, L. Liang, J. Kong, H. Terrones, V. Meunier, and M. S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy, Nano Lett. 14(10), 5500 (2014)
https://doi.org/10.1021/nl5014597
45 W. Yao, E. Wang, C. Bao, Y. Zhang, K. Zhang, K. Bao, C. K. Chan, C. Chen, J. Avila, M. C. Asensio, J. Zhu, and S. Zhou, Quasicrystalline 30◦ twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling, Proc. Natl. Acad. Sci. USA 115(27), 6928 (2018)
https://doi.org/10.1073/pnas.1720865115
46 H. Zhang, Ultrathin two-dimensional nanomaterials, ACS Nano 9(10), 9451 (2015)
https://doi.org/10.1021/acsnano.5b05040
47 M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices, Nat. Commun. 4(1), 1624 (2013)
https://doi.org/10.1038/ncomms2652
48 K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D. C. Dillen, C. M. Corbet, and E. Tutuc, Band alignment in WSe2-graphene heterostructures,ACS Nano 9(4), 4527 (2015)
https://doi.org/10.1021/acsnano.5b01114
49 Y. Zhao, X. Luo, H. Li, J. Zhang, P. T. Araujo, C. K. Gan, J. Wu, H. Zhang, S. Y. Quek, M. S. Dresselhaus, and Q. Xiong, Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2, Nano Lett. 13(3), 1007 (2013)
https://doi.org/10.1021/nl304169w
50 R. He, J. A. Yan, Z. Yin, Z. Ye, G. Ye, J. Cheng, J. Li, and C. H. Lui, Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency raman spectroscopy, Nano Lett. 16(2), 1404 (2016)
https://doi.org/10.1021/acs.nanolett.5b04925
51 S. Huang, L. Liang, X. Ling, A. A. Puretzky, D. B. Geohegan, B. G. Sumpter, J. Kong, V. Meunier, and M. S. Dresselhaus, Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2, Nano Lett. 16(2), 1435 (2016)
https://doi.org/10.1021/acs.nanolett.5b05015
52 H. Li, J. Wu, X. Huang, Z. Yin, J. Liu, and H. Zhang, A universal, rapid method for clean transfer of nanostructures onto various substrates, ACS Nano 8(7), 6563 (2014)
https://doi.org/10.1021/nn501779y
53 H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, and H. Zhang, Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy, ACS Nano 7(11), 10344 (2013)
https://doi.org/10.1021/nn4047474
54 X. L. Li, X. F. Qiao, W. P. Han, Y. Lu, Q. H. Tan, X. L. Liu, and P. H. Tan, Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates, Nanoscale 7(17), 8135 (2015)
https://doi.org/10.1039/C5NR01514F
55 M. Buscema, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2, Nano Res. 7(4), 561 (2014)
https://doi.org/10.1007/s12274-014-0424-0
56 S. Wu, X. Shi, Y. Liu, L. Wang, J. Zhang, W. Zhao, P. Wei, W. Huang, X. Huang, and H. Li, The influence of two-dimensional organic adlayer thickness on the ultralow frequency Raman spectra of transition metal dichalcogenide nanosheets, Sci. China Mater. (2018), doi: 10.1007/s40843-018-9303-6
https://doi.org/10.1007/s40843-018-9303-6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed