Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (1): 13603
  本期目录 |  
Graphene based functional devices: A short review
Rong Wang1, Xin-Gang Ren1,2(), Ze Yan3, Li-Jun Jiang1(), Wei E. I. Sha4, Guang-Cun Shan5,6()
1. Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
2. Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, Anhui University, Hefei 230039, China
3. School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing 100191, China
4. Key Laboratory of Micro-nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
5. School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing 100191, China
6. California NanoSystem Institute and Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095, USA
 全文: PDF(27911 KB)  

Graphene is an ideal 2D material system bridging electronic and photonic devices. It also breaks the fundamental speed and size limits by electronics and photonics, respectively. Graphene offers multiple functions of signal transmission, emission, modulation, and detection in a broad band, high speed, compact size, and low loss. Here, we have a brief view of graphene based functional devices at microwave, terahertz, and optical frequencies. Their fundamental physics and computational models were discussed as well.

Key wordsgraphene    terahertz    antenna    microwave
收稿日期: 2018-06-18      出版日期: 2019-01-01
. [J]. Frontiers of Physics, 2019, 14(1): 13603.
Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review. Front. Phys. , 2019, 14(1): 13603.
1 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
2 A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
3 M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1), 132 (2010)
4 P. Avouris, Graphene: Electronic and photonic properties and devices, Nano Lett. 10(11), 4285 (2010)
5 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)
6 Q. L. Bao and K. P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS Nano 6(5), 3677 (2012)
7 A. N. Grigorenko, M. Polini, and K. S. Novoselov, Graphene plasmonics, Nat. Photonics 6(11), 749 (2012)
8 K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490, 192 (2012)
9 P. Tassin, T. Koschny, M. Kafesaki, and C. M. Soukoulis, A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics, Nat. Photonics 6(4), 259 (2012)
10 F. J. G. de Abajo, Graphene nanophotonics, Science 339(6122), 917 (2013)
11 F. J. G. de Abajo, Graphene plasmonics: Challenges and opportunities, ACS Photonics 1(3), 135 (2014)
12 T. Low and P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications, ACS Nano 8(2), 1086 (2014)
13 T. Otsuji, V. Popov, and V. Ryzhii, Active graphene plasmonics for terahertz device applications, J. Phys. D Appl. Phys. 47(9), 094006 (2014)
14 T. Stauber, Plasmonics in Dirac systems: from graphene to topological insulators, J. Phys.: Condens. Matter 26(12), 123201 (2014)
15 N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, Graphene: A dynamic platform for electrical control of plasmonic resonance, Nanophotonics 4, 214 (2015)
16 S. S. Xiao, X. L. Zhu, B. H. Li, and N. A. Mortensen, Graphene-plasmon polaritons: From fundamental properties to potential applications, Front. Phys. 11(2), 117801 (2016)
17 S. Y. Huang, C. Y. Song, G. W. Zhang, and H. G. Yan, Graphene plasmonics: Physics and potential applications, Nanophotonics-Berlin 6, 1191 (2017)
18 V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Magneto-optical conductivity in graphene, J. Phys.: Condens. Matter 19(2), 026222 (2007)
19 M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene at infrared frequencies, Phys. Rev. B 80(24), 245435 (2009)
20 Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, Broad electrical tuning of grapheneloaded plasmonic antennas, Nano Lett. 13(3), 1257 (2013)
21 V. Nayyeri, M. Soleimani, and O. M. Ramahi, Modeling graphene in the finite-difference time-domain method using a surface boundary condition, IEEE Trans. An-tennas Propag. 61(8), 4176 (2013)
22 P. Li, L. J. Jiang, and H. Bagci, A resistive boundary condition enhanced DGTD scheme for the transient analysis of graphene, IEEE Trans. Antenn. Propag. 63(7), 3065 (2015)
23 P. Li, and L. J. Jiang, Modeling of magnetized graphene from microwave to THz range by DGTD with a scalar RBC and an ADE, IEEE Trans. Antenn. Propag. 63(10), 4458 (2015)
24 Y. Shao, J. J. Yang, and M. Huang, A review of computational electromagnetic methods for graphene modeling, Int. J. Antennas Propag. 2016, 1 (2016)
25 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Twodimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)
26 P. Neugebauer, M. Orlita, C. Faugeras, A. L. Barra, and M. Potemski, How perfect can graphene be? Phys. Rev. Lett. 103(13), 136403 (2009)
27 D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, and A. K. Geim, Dirac cones reshaped by interaction effects in suspended graphene, Nat. Phys. 7(9), 701 (2011)
28 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, and E. H. Conrad, Electronic confinement and coherence in patterned epitaxial graphene, Science 312(5777), 1191 (2006)
29 K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, and E. Rotenberg, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nat. Mater. 8(3), 203 (2009)
30 W. A. De Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, and E. Conrad, Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide, Proc. Natl. Acad. Sci. USA 108(41), 16900 (2011)
31 J. Hass, J. E. Millán-Otoya, P. N. First, and E. H. Conrad, Interface structure of epitaxial graphene grown on 4HSiC (0001), Phys. Rev. B 78(20), 205424 (2008)
32 Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene, Science 327(5966), 662 (2010)
33 R. F. Davis, G. Kelner, M. Shur, J. W. Palmour, and J. A. Edmond, Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide, Proc. IEEE 79(5), 677 (1991)
34 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of highquality and uniform graphene films on copper foils, Science 324(5932), 1312 (2009)
35 N. Petrone, C. R. Dean, I. Meric, A. M. van Der Zande, P. Y. Huang, L. Wang, and J. Hone, Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene, Nano Lett. 12(6), 2751 (2012)
36 X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, and L. Fu, Graphene films with large domain size by a two-step chemical vapor deposition process, Nano Lett. 10(11), 4328 (2010)
37 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, and J. Hone, Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
38 R. Wang, S. Raju, M. Chan, and L. J. Jiang, Low frequency behavior of CVD graphene from DC to 40 GHz, Prog. Electromagnetics Res. 71, 1 (2017)
39 M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets, J. Appl. Phys. 112(11), 114915 (2012)
40 Z. Chang, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, Generation of THz wave with orbital angular momentum by graphene patch reectarray, Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2015 IEEE MTT-S International Microwave Workshop, pp 1–3 (2015)
41 Y. L. Xu, X. C. Wei, and E. P. Li, Three-dimensional tunable frequency selective surface based on vertical graphene micro-ribbons, J. Electromagnet. Wave 29(16), 2130 (2015)
42 G. W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene, J. Appl. Phys. 103(6), 064302 (2008)
43 Y. S. Cao, L. J. Jiang, and A. E. Ruehli, An equivalent circuit model for graphene-based terahertz antenna using the PEEC method, IEEE Trans. Antenn. Propag. 64(4), 1385 (2016)
44 L. Pierantoni, D. Mencarelli, M. Bozzi, R. Moro, S. Moscato, L. Perregrini, and S. Bellucci, Broadband microwave attenuator based on few layer graphene akes, IEEE Trans. Microw. Theory 63(8), 2491 (2015)
45 R. Wang and L. J. Jiang, Electrically tunable behavior of graphene on high-resistivity silicon substrate, Antennas and Propagation and USNC/URSI National Radio Science Meeting, 2017 IEEE International Symposium, pp 1031–1032 (2017)
46 J. Yang, F. Kong, and K. Li, Broad tunable nanoantenna based on graphene log-periodic toothed structure, Plasmonics 11(4), 981 (2016)
47 Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, Active tunable absorption enhancement with graphene nanodisk arrays, Nano Lett. 14(1), 299 (2014)
48 Z. Y. Fang, Y. M. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. L. Koppens, P. Nordlander, and N. J. Halas, Plasmon-induced doping of graphene, ACS Nano 6(11), 10222 (2012)
49 J. Wu, Tunable ultra-narrow spectrum selective absorption in a graphene monolayer at terahertz frequency, J. Phys. D Appl. Phys. 49(21), 215108 (2016)
50 F. Xiong, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, Ultrabroad band, more than one order absorption enhancement in graphene with plasmonic light trapping, Sci. Rep. 5(1), 16998 (2015)
51 V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, Electronic modulation of infrared radiation in graphene plasmonic resonators, Nat. Commun. 6(1), 7032 (2015)
52 B. Mehta, and M. E. Zaghloul, Tuning the scattering response of the optical nano antennas using graphene, IEEE Photonics J. 6(1), 1 (2014)
53 D. Sikdar, W. Zhu, W. Cheng, and M. Premaratne, Substrate-mediated broadband tunability in plasmonic resonances of metal nanoantennas on finite highpermittivity dielectric substrate, Plasmonics 10(6), 1663 (2015)
54 A. Locatelli, G. E. Town, and C. De Angelis, Graphenebased terahertz waveguide modulators, IEEE Trans. Terahertz Sci. Technol. 5(3), 351 (2015)
55 R. Yu, V. Pruneri, and F. J. Garcia de Abajo, Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas, Sci. Rep. 6(1), 32144 (2016)
56 Z. Li and N. Yu, Modulation of mid-infrared light using graphene-metal plasmonic antennas, Appl. Phys. Lett. 102(13), 131108 (2013)
57 N. Yi, Z. Liu, S. Sun, Q. Song, and S. Xiao, Midinfrared tunable magnetic response in graphene-based diabolo nanoantennas, Carbon 94, 501 (2015)
58 Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, Wide wavelength tuning of optical antennas on graphene with nanosecond response time, Nano Lett. 14(1), 214 (2014)
59 Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators, Nano Lett. 14(11), 6526 (2014)
60 X. C. Wang, W. S. Zhao, J. Hu, and W. Y. Yin, Reconfigurable terahertz leaky-wave antenna using graphenebased high-impedance surface, IEEE T. Nanotechnology 14(1), 62 (2015)
61 Y. Qin, X. Y. Z. Xiong, W. E. I. Sha, and L. J. Jiang, Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna, J. Phys.: Condens. Matter 30(14), 144007 (2018)
62 W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, Graphene Fabry-Perot cavity leaky-wave antennas: Plasmonic versus nonplasmonic solutions, IEEE T. Antenn. Propag. 65(4), 1651 (2017)
63 Y. Wu, M. Qu, L. Jiao, Y. Liu, and Z. Ghassemlooy, Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns, AIP Adv. 6(6), 065308 (2016)
64 A. Hosseinbeig, A. Pirooj, and F. B. Zarrabi, A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator, J. Magn. Magn. Mater. 423, 203 (2017)
65 F. B. Zarrabi, M. Mohaghegh, M. Bazgir, and A. S. Arezoomand, Graphene-Gold Nano-ring antenna for Dualresonance optical application,Opt. Mater. 51, 98 (2016)
66 Z. Dong, C. Sun, J. Si, and X. Deng, A tunable plasmonic nano-antenna based on metal-graphene doublenanorods, Laser Phys. Lett. 15(5), 056202 (2018)
67 A. Cabellos-Aparicio, I. Llatser, E. Alarcon, A. Hsu, and T. Palacios, Use of terahertz photoconductive sources to characterize tunable graphene RF plasmonic antennas, IEEE T. Nanotechnology 14(2), 390 (2015)
68 M. M. Seyedsharbaty, and R. A. Sadeghzadeh, Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load, Opt. Quantum Electron. 49(6), 221 (2017)
69 S. Abadal, I. Llatser, A. Mestres, H. Lee, E. Alarcon, and A. Cabellos-Aparicio, Time-domain analysis of graphenebased miniaturized antennas for ultra-short-range impulse radio communications, Ieee. T. Commun. 63(4), 1470 (2015)
70 X. He, P. Gao, and W. Shi, A further comparison of graphene and thin metal layers for plasmonics, Nanoscale 8(19), 10388 (2016)
71 Y. Bao, S. Zu, Y. Zhang, and Z. Fang, Active control of graphene-based unidirectional surface plasmon launcher, ACS Photonics 2(8), 1135 (2015)
72 X. L. Zhao, C. Yuan, L. Zhu, and J. Q. Yao, Graphenebased tunable terahertz plasmon-induced transparency metamaterial, Nanoscale 8(33), 15273 (2016)
73 M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, Tunable terahertz hybrid metal-graphene plasmons, Nano Lett. 15(10), 7099 (2015)
74 X. G. Ren, W. E. I. Sha, and W. C. H. Choy, Tuning optical responses of metallic dipole nanoantenna using graphene, Opt. Express 21(26), 31824 (2013)
75 Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. G. de Abajo, Gated tunability and hybridization of localized plasmons in nanostructured graphene, ACS Nano 7(3), 2388 (2013)
76 B. Du, L. Lin, W. Liu, S. Zu, Y. Yu, Z. Li, Y. Kang, H. Peng, X. Zhu, and Z. Fang, Plasmonic hot electron tunneling photo-detection in vertical Au-graphene hybrid nanostructures, Laser Photonics Rev. 11(1), 1600148 (2017)
77 R. Filter, M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, and F. Lederer, Tunable graphene antennas for selective enhancement of THz-emission, Opt. Express 21(3), 3737 (2013)
78 T. Zhou, Z. Cheng, H. Zhang, M. Le Berre, L. Militaru, and F. Calmon, Miniaturized tunable terahertz antenna based on graphene, Opt. Techn. Let. 56(8), 1792 (2014)
79 M. Dragoman, M. Aldrigo, A. Dinescu, D. Dragoman, and A. Costanzo, Towards a terahertz direct receiver based on graphene up to 10 THz, J. Appl. Phys. 115(4), 044307 (2014)
80 D. Correas-Serrano, J. S. Gomez-Diaz, A. Alu, and A. Alvarez-Melcon, Electrically and magnetically biased graphene-based cylindrical waveguides: Analysis and applications as reconfigurable antennas, IEEE Trans. Terahertz Sci. Technol. 5(6), 951 (2015)
81 J. M. Jornet, and I. F. Akyildiz, Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks, IEEE J. Sel. Area. Comm. 31(12), 685 (2013)
82 J. Li, M. He, C. Wu, and C. Zhang, Radiation pattern reconfigurable graphene leaky-wave antenna at terahertz band based on dielectric grating structure,IEEE Antennas Wirel. Propag. Lett. 16, 1771 (2017)
83 W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, A reconfigurable substrate? superstrate graphene-based leaky-wave THz antenna, IEEE Antennas Wirel. Propag. Lett. 15, 1545 (2016)
84 G. Moreno, H. Mehrpour Bernety, and A. B. Yakovlev, Reduction of mutual coupling between strip dipole antennas at terahertz frequencies with an elliptically shaped graphene monolayer, IEEE Antennas Wirel. Propag. Lett. 15, 1533 (2016)
85 X. H. Cheng, Y. Yao, S. W. Qu, Y. L. Wu, J. S. Yu, and X. D. Chen, Circular beam-reconfigurable antenna base on graphene-metal hybrid, Electron. Lett. 52(7), 494 (2016)
86 M. Tamagnone and J. R. Mosig, Theoretical Limits on the Efficiency of Reconfigurable and Nonreciprocal Graphene Antennas, IEEE Antennas Wirel. Propag. Lett. 15, 1549 (2016)
87 B. Zhu, G. Ren, Y. Gao, B. Wu, Y. Lian, and S. Jian, Creation of graphene plasmons vortex via cross shape nanoantennas under linearly polarized incidence, Plasmonics 12(3), 863 (2017)
88 Z. Chang, B. You, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, A reconfigurable graphene reectarray for generation of vortex THz waves, IEEE Antennas Wirel. Propag. Lett. 15, 1537 (2016)
89 S. Kosuga, R. Suga, O. Hashimoto, and S. Koh, Graphene-based optically transparent dipole antenna, Appl. Phys. Lett. 110(23), 233102 (2017)
90 T. T. Tung, S. J. Chen, C. Fumeaux, and D. Losic, Scalable realization of conductive graphene films for highefficiency microwave antennas, J. Mater. Chem. C 4(45), 10620 (2016)
91 M. Dragoman, D. Neculoiu, A. C. Bunea, G. Deligeorgis, M. Aldrigo, D. Vasilache, A. Dinescu, G. Konstantinidis, D. Mencarelli, L. Pierantoni, and M. Modreanu, A tunable microwave slot antenna based on graphene, Appl. Phys. Lett. 106(15), 153101 (2015)
92 C. Nunez Alvarez, R. Cheung, and J. S. Thompson, Performance analysis of hybrid metal-graphene frequency reconfigurable antennas in the microwave regime, Ieee. T. Antenn. Propag. 65(4), 1558 (2017)
93 M. Aldrigo, M. Dragoman, and D. Dragoman, Smart antennas based on graphene, J. Appl. Phys. 116(11), 114302 (2014)
94 P. Alonso-Gonzalez, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Velez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns, Science 344(6190), 1369 (2014)
95 M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, Sinusoidally modulated graphene leaky-wave antenna for electronic beam-scanning at THz, IEEE Trans. Terahertz Sci. Technol. 4(1), 116 (2014)
96 D. Correas-Serrano, J. S. Gomez-Diaz, D. L. Sounas, Y. Hadad, A. Alvarez-Melcon, and A. Alu, Nonreciprocal graphene devices and antennas based on spatiotemporal modulation, IEEE Antennas Wirel. Propag. Lett. 15, 1529 (2016)
97 P. Y. Chen, M. Farhat, A. N. Askarpour, M. Tymchenko, and A. Alu, Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer, J. Opt. 16(9), 094008 (2014)
98 Y. Cheng, L. S. Wu, M. Tang, Y. P. Zhang, and J. F. Mao, A sinusoidally-modulated leaky-wave antenna with gapped graphene ribbons, IEEE Antennas Wirel. Propag. Lett. 16, 3000 (2017)
99 Z. Zhu, S. Joshi, S. Grover, and G. Moddel, Graphene geometric diodes for terahertz rectennas, J. Phys. D Appl. Phys. 46(18), 185101 (2013)
100 C. Chakraborty, R. Beams, K. M. Goodfellow, G. W. Wicks, L. Novotny, and A. Nick Vamivakas, Optical antenna enhanced graphene photodetector, Appl. Phys. Lett. 105(24), 241114 (2014)
101 X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, Highly flexible and conductive printed graphene for wireless wearable communications applications, Sci. Rep. 5(1), 18298 (2016)
102 M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider and M. Helm, Ultrafast graphenebased broadband THz detector, Appl. Phys. Lett. 103(2), 021113 (2013)
103 Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, High-responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection, Nano Lett. 14(7), 3749 (2014)
104 Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, Graphene-antenna sandwich photodetector, Nano Lett. 12(7), 3808 (2012)
105 S. Anand, D. Sriram Kumar, R. J. Wu, and M. Chavali, Graphene nanoribbon based terahertz antenna on polyimide substrate, Optik 125(19), 5546 (2014)
106 A. S. Thampy, M. S. Darak, and S. K. Dhamodharan, Analysis of graphene based optically transparent patch antenna for terahertz communications, Physica E 66, 67 (2015)
107 S. A. Naghdehforushha and G. Moradi, High directivity plasmonic graphene-based patch array antennas with tunable THz band communications, Optik 168, 440 (2018)
108 R. Bala and A. Marwaha, Characterization of graphene for performance enhancement of patch antenna in THz region, Optik 127(4), 2089 (2016)
109 Y. Dong, P. Liu, D. Yu, G. Li, and F. Tao, Dual-band reconfigurable terahertz patch antenna with graphenestack- based backing cavity, IEEE Antennas Wirel. Propag. Lett. 15, 1541 (2016)
110 R. Bala, and A. Marwaha, Development of computational model for tunable characteristics of graphene based triangular patch antenna in THz regime, J. Comput. Electron. 15(1), 222 (2016)
111 P. Kopyt, B. Salski, M. Olszewska-Placha, D. Janczak, M. Sloma, T. Kurkus, M. Jakubowska, and W. Gwarek, Graphene-based dipole antenna for a UHF RFID tag, IEEE T. Antenn. Propag. 64(7), 2862 (2016)
112 M. Akbari, M. W. A. Khan, M. Hasani, T. Bjorninen, L. Sydanheimo, and L. Ukkonen, Fabrication and characterization of graphene antenna for low-cost and environmentally friendly RFID tags, IEEE Antennas Wirel. Propag. Lett. 15, 1569 (2016)
113 X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, Binder-free highly conductive graphene laminate for low cost printed radio frequency applications, Appl. Phys. Lett. 106(20), 203105 (2015)
114 Z. Xu, X. Dong, and J. Bornemann, Design of a Reconfigurable MIMO System for THz communications based on graphene antennas, IEEE Trans. Terahertz Sci. Technol. 4(5), 609 (2014)
115 S. Abadal, E. Alarcon, A. Cabellos-Aparicio, M. C. Lemme, and M. Nemirovsky, Graphene-enabled wireless communication for massive multicore architectures, IEEE Commun. Mag. 51(11), 137 (2013)
116 B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. (Grace) Xing, Unique prospects for graphene-based terahertz modulators, Appl. Phys. Lett. 99(11), 113104 (2011)
117 X. He and S. Kim, Tunable terahertz graphene metamaterials, Carbon 86, 237 (2015)
118 A. Tredicucci, and M. S. Vitiello, Device concepts for graphene-based terahertz photonics, IEEE J. Sel. Top. Quantum Electron. 20(1), 130 (2014)
119 M. Tamagnone, A. Fallahi, J. R. Mosig, and J. Perruisseau-Carrier, Fundamental limits and nearoptimal design of graphene modulators and nonreciprocal devices, Nat. Photonics 8(7), 556 (2014)
120 Y. Chen, H. Huang, D. Akinwande, and A. Alu, Graphene-based plasmonic platform for reconfigurable terahertz nanodevices, ACS Photonics 1(8), 647 (2014)
121 M. Rahm, J. S. Li, and W. J. Padilla, THz wave modulators: A brief review on different modulation techniques, J. Infrared Millim. Terahertz Waves 34(1), 1 (2013)
122 P. Y. Chen, and A. Alu, Terahertz metamaterial devices based on graphene nanostructures, IEEE Trans. Terahertz Sci. Technol. 3(6), 748 (2013)
123 H. Tanoto, L. Ding, and J. H. Teng, Tunable terahertz metamaterials, Terahertz Sci. Technol. 6(1), 1 (2013)
124 S. H. Lee, H. D. Kim, H. J. Choi, B. Kang, Y. R. Cho, and B. Min, Broadband modulation of terahertz waves with non-resonant graphene meta-devices, IEEE Trans. Terahertz Sci. Technol. 3(6), 764 (2013)
125 Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene, Phys. Chem. Chem. Phys. 15(14), 5084 (2013)
126 A. Andryieuski and A. V. Lavrinenko, Graphene metamaterials based tunable terahertz absorber: Effective surface conductivity approach, Opt. Express 21(7), 9144 (2013)
127 M. Amin, M. Farhat, and H. Bagci, A dynamically reconfigurable fano metamaterial through graphene tuning for switching and sensing applications, Sci. Rep. 3(1), 2105 (2013)
128 B. Vasić, M. M. Jakovljević, G. Isić, and R. Gajić, Tunable metamaterials based on split ring resonators and doped graphene, Appl. Phys. Lett. 103(1), 011102 (2013)
129 K. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, Graphene-based tunable metamaterial terahertz filters, Appl. Phys. Lett. 105(9), 093105 (2014)
130 Y. Bludov, V. N. M. R. Peres, and M. I. Vasilevskiy, Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence, J. Opt. 15(11), 114004 (2013)
131 J. T. Liu, N. H. Liu, L. Wang, X. H. Deng, and F. H. Su, Gate-tunable nearly total absorption in graphene with resonant metal back reflector, Europhys. Lett. 104(5), 57002 (2013)
132 B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions, Nat. Commun. 3(1), 780 (2012)
133 I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J. H. Son, Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy, Nano Lett. 12(2), 551 (2012)
134 B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, Extraordinary control of terahertz beam reflectance in graphene electroabsorption modulators, Nano Lett. 12(9), 4518 (2012)
135 B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, Terahertz imaging employing graphene modulator arrays, Opt. Express 21(2), 2324 (2013)
136 L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol. 6(10), 630 (2011)
137 B. Sensale-Rodriguez, R. Yan, M. Zhu, D. Jena, L. Liu, and H. G. Xing, Efficient terahertz electro-absorption modulation employing graphene plasmonic structures, Appl. Phys. Lett. 101(26), 261115 (2012)
138 X.-J. He, T.-Y. Li, L. Wang, J.-M. Wang, J.-X. Jiang, G.-H. Yang, F.-Y. Meng, and Q. Wu, Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene, J. Appl. Phys. 115, 17B903 (2014)
139 Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency, Opt. Express 22(19), 22743 (2014)
140 J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows, Sci. Rep. 4(1), 6128 (2015)
141 Z. Wang, M. Zhou, X. Lin, H. Liu, H. Wang, F. Yu, S. Lin, E. Li, and H. Chen, A circuit method to integrate metamaterial and graphene in absorber design, Opt. Commun. 329, 76 (2014)
142 B. Grześkiewicz, A. Sierakowski, J. Marczewski, N. Pałka, and E. Wolarz, Polarization-insensitive metamaterial absorber of selective response in terahertz frequency range, J. Opt. 16(10), 105104 (2014)
143 L. Wang, X. Chen, A. Yu, Y. Zhang, J. Ding, and W. Lu, Highly sensitive and wideband tunable terahertz response of plasma waves based on graphene field effect transistors, Sci. Rep. 4(1), 5470 (2015)
144 N. Born, M. Scheller, M. Koch, and J. V. Moloney, Cavity enhanced terahertz modulation, Appl. Phys. Lett. 104(10), 103508 (2014)
145 B. Wang, X. Zhang, K. P. Loh, and J. Teng, Tunable broadband transmission and phase modulation of light through graphene multilayers, J. Appl. Phys. 115(21), 213102 (2014)
146 D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, Hybrid graphene plasmonic waveguide modulators, Nat. Commun. 6(1), 8846 (2015)
147 Q. Mao, Q. Y. Wen, W. Tian, T. L. Wen, Z. Chen, Q. H. Yang, and H. W. Zhang, High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors, Opt. Lett. 39(19), 5649 (2014)
148 X. He and H. Lu, Graphene-supported tunable extraordinary transmission, Nanotechnology 25(32), 325201 (2014)
149 S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials, Nat. Mater. 11(11), 936 (2012)
150 R. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, and H. G. Xing, A new class of tunable metamaterial terahertz modulators, Opt. Express 20(27), 28664 (2012)
151 R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, Low-bias terahertz amplitude modulator based on split-ring resonators and graphene, ACS Nano 8(3), 2548 (2014)
152 A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. Uhd Jepsen, and A. V. Lavrinenko, Non-resonant terahertz field enhancement in periodically arranged nanoslits, J. Appl. Phys. 112(7), 074318 (2012)
153 S. F. Shi, B. Zeng, H. L. Han, X. Hong, H. Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures, Nano Lett. 15(1), 372 (2015)
154 Y. Wu, C. Laovorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. M. Chia, and H. Yang, Graphene terahertz modulators by ionic liquid gating, Adv. Mater. 27(11), 1874 (2015)
155 P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, Spectrally wide-band terahertz wave modulator based on optically tuned graphene, ACS Nano 6(10), 9118 (2012)
156 Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, Graphene based all-optical spatial terahertz modulator, Sci. Rep. 4(1), 7409 (2015)
157 S. A. Mikhailov, Non-linear graphene optics for terahertz applications, Microelectronics J. 40(4–5), 712 (2009)
158 K. Yang, S. Arezoomandan, and B. Sensale-Rodriguez, The linear and nonlinear THz properties of graphene, Terahertz Sci. Technol. 6(4), 223 (2016)
159 I. Khromova, A. Andryieuski, and A. Lavrinenko, Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterials, Laser Photonics Rev. 8(6), 916 (2014)
160 G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, Integrated terahertz graphene modulator with 100 modulation depth, ACS Photonics 2(11), 1559 (2015)
161 Q. Li, Z. Tian, X. Zhang, R. Singh, L. Du, J. Gu, and W. Zhang, Active graphene-silicon hybrid diode for terahertz waves, Nat. Commun. 6(1), 7082 (2015)
162 A. Tredicucci and M. S. Vitiello, Device concepts for graphene-based terahertz photonics, IEEE J. Sel. Top. Quantum Electron. 20, 8500109 (2007)
163 F. Sizov and A. Rogalski, THz detectors, Prog. Quantum Electron. 34(5), 278 (2010)
164 N. Zhang, R. Song, M. Hu, G. Shan, C. Wang, and J. Yang, A low-loss design of bandpass filter at the terahertz band, IEEE Microw. Wirel. Compon. Lett. 28(7), 573 (2018)
165 A. Pitanti, D. Coquillat, D. Ercolani, L. Sorba, F. Teppe, W. Knap, G. De Simoni, F. Beltram, A. Tredicucci, and M. S. Vitiello, Terahetz detection by heterostructured InAs/InSb nanowire based field effect transistors, Appl. Phys. Lett. 101(14), 141103 (2012)
166 W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Lausakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. El Fatimy, Y. M. Meziani, and T. Otsuji, Field effect transistors for terahertz detection: Physics and first imaging applications, J. Infrared Millim. Terahertz Waves 30, 1319 (2009)
167 E. Ojefors, U. R. Pfeiffer, A. Lisauskas, and H. G. Roskos, A 0.65 THz focal-plane array in a quarter-micron CMOS process technology, IEEE J. Solid-State Circuits 44(7), 1968 (2009)
168 M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, Thermoelectric detection and imaging of propagating graphene plasmons, Nat. Mater. 16(2), 204 (2017)
169 L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, Graphene field-effect transistors as Roomtemperature terahertz detectors, Nat. Mater. 11(10), 865 (2012)
170 R. M. Feenstra, D. Jena, and G. Gu, Single-particle tunneling in doped graphene insulator-graphene junctions, J. Appl. Phys. 111(4), 043711 (2012)
171 V. Ryzhii, A. Satou, T. Otsuji, M. Ryzhii, V. Mitin, and M. S. Shur, Dynamic effects in double graphenelayer structures with inter-layer resonant-tunnelling negative conductivity, J. Phys. D Appl. Phys. 46(31), 315107 (2013)
172 A. Mishchenko, J. S. Tu, Y. Cao, R. V. Gorbachev, J. R. Wallbank, M. T. Greenaway, V. E. Morozov, S. V. Morozov, M. J. Zhu, S. L. Wong, F. Withers, C. R. Woods, Y. J. Kim, K. Watanabe, T. Taniguchi, E. E. Vdovin, O. Makarovsky, T. M. Fromhold, V. I. Fal’ko, A. K. Geim, L. Eaves, and K. S. Novoselov, Twist controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures, Nat. Nanotechnol. 9(10), 808 (2014)
173 B. Fallahazad, K. Lee, S. Kang, J. Xue, S. Larentis, C. Corbet, K. Kim, H. C. P. Movva, T. Taniguchi, K. Watanabe, L. F. Register, S. K. Banerjee, and E. Tutuc, Gate-tunable resonant tunneling in double bilayer graphene heterostructures, Nano Lett. 15(1), 428 (2015)
174 A. Tomadin, A. Tredicucci, V. Pellegrini, M. S. Vitiello, and M. Polini, Photocurrent-based detection of terahertz radiation in graphene, Appl. Phys. Lett. 103(21), 211120 (2013)
175 V. Ryzhii, T. Otsuji, M. Ryzhii, V. Ya Aleshkin, A. A. Dubinov, D. Svintsov, V. Mitin, M. S. Shur, Graphene vertical cascade interband terahertz and infrared photodetectors, 2D Mater. 2(2), 025002 (2015)
176 B. Sensale-Rodriguez, Graphene-insulator-graphene active plasmonic terahertz devices, Appl. Phys. Lett. 103(12), 123109 (2013)
177 A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, Antenna-Integrated 0.6 THz FET direct detectors based on CVD graphene, Nano Lett. 14(10), 5834 (2014)
178 G. C. Shan, C. H. Shek, and M. J. Hu, Developments of Cavity-Controlled Devices with Graphene and Graphene Nanoribbon for Optoelectronics Applications, Graphene Science Handbook, Chapter 24, pp 395–410, CRC Press, 2016
179 W. Knap, S. Rumyantsev, M. S. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanometer size field effect transistors for terahertz detectors, Nanotechnology 24(21), 214002 (2013)
180 J. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, Hot carrier transport and photocurrent response in graphene, Nano Lett. 11(11), 4688 (2011)
181 M. Freitag, T. Low, F. Xia, and P. Avouris, Photoconductivity of biased graphene, Nat. Photonics 7(1), 53 (2013)
182 J. Yan, M. H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, Dual-gated bilayer graphene hot-electron bolometer, Nat. Nanotechnol. 7(7), 472 (2012)
183 X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene, Nat. Nanotechnol. 9(10), 814 (2014)
184 A. V. Muraviev, S. L. Rumyantsev, G. Liu, A. A. Balandin, W. Knap, and M. S. Shur, Plasmonic and bolometric terahertz detection by graphene field-effect transistor, Appl. Phys. Lett. 103(18), 181114 (2013)
185 F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
186 F. Schwierz, Graphene transistors: Status, prospects, and problems, Proc. IEEE 101(7), 1567 (2013)
187 W. Y. Fu, L. Jiang, E. P. van Geest, L. M. C. Lima, and G. F. Schneider, Sensing at the surface of graphene field-effect transistors, Adv. Mater. 29(6), 1603610 (2017)
188 J. S. Friedman, A. Girdhar, R. M. Gelfand, G. Memik, H. Mohseni, A. Taove, B. W. Wessels, J. P. Leburton, and A. V. Sahakian, Cascaded spintronic logic with lowdimensional carbon, Nat. Commun. 8, 15635 (2017)
189 E. C. Ahn, H. S. P. Wong and E. Pop, Carbon nanomaterials for non-volatile memories, Nature Reviews Materials 3(3), (2018)
190 F. Hui, E. Grustan-Gutierrez, S. B. Long, Q. Liu, A. K. Ott, A. C. Ferrari and M. Lanza, Graphene and related materials for resistive random access memories, Advanced Electronic Materials 3(8), (2017)
191 J. Y. Son, Y. H. Shin, H. Kim, and H. M. Jang, NiO Resistive Random Access Memory Nanocapacitor Array on Graphene, ACS Nano 4(5), 2655 (2010)
192 H. J. Hwang, J. H. Yang, Y. G. Lee, C. Cho, C. G. Kang, S. C. Kang, W. Park, and B. H. Lee, Ferroelectric polymer-gated graphene memory with high speed conductivity modulation, Nanotechnology 24(17), 175202 (2013)
193 H. Tian, H. Y. Chen, B. Gao, S. Yu, J. Liang, Y. Yang, D. Xie, J. Kang, T. L. Ren, Y. Zhang, and H. S. Wong, Monitoring oxygen movement by Raman spectroscopy of resistive random access memory with a graphene-inserted electrode, Nano Lett. 13(2), 651 (2013)
194 Y. Ji, S. Lee, B. Cho, S. Song, and T. Lee, Flexible organic memory devices with multilayer graphene electrodes, ACS Nano 5(7), 5995 (2011)
195 X. Wang, W. Xie, and J. B. Xu, Graphene based nonvolatile memory devices, Adv. Mater. 26(31), 5496 (2014)
196 A. Nag, A. Mitra, and S. C. Mukhopadhyay, Graphene and its sensor-based applications: A review, Sensors and Actuators A-Physical 270, 177 (2018)
197 C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos, Graphene based sensors and biosensors, TrAC Trends in Analytical Chemistry 91, 53 (2017)
198 T. Wang, D. Huang, Z. Yang, S. S. Xu, G. L. He, X. L. Li, N. T. Hu, G. L. Yin, D. N. He, and L. Y. Zhang, A review on graphene-based gas/vapor sensors with unique properties and potential applications, Nano-Micro Lett. 8(2), 95 (2016)
199 E. W. Hill, A. Vijayaragahvan, and K. Novoselov, Graphene sensors, IEEE Sens. J. 11(12), 3161 (2011)
200 E. Singh, M. Meyyappan, and H. S. Nalwa, Flexible graphene-based wearable gas and chemical sensors, ACS Appl. Mater. Interfaces 9(40), 34544 (2017)
201 A. Gutés, B. Hsia, A. Sussman, W. Mickelson, A. Zettl, C. Carraro, and R. Maboudian, Graphene decoration with metal nanoparticles: towards easy integration for sensing applications, Nanoscale 4(2), 438 (2012)
202 X. H. Li, W. C. H. Choy, X. G. Ren, D. Zhang, and H. F. Lu, Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system, Adv. Funct. Mater. 24(21), 3114 (2014)
203 X. Li, X. Ren, Y. Zhang, W. C. H. Choy, and B. Wei, An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS, Nanoscale 7(26), 11291 (2015)
204 Y. Zhao and Y. W. Zhu, Graphene-based hybrid films for plasmonic sensing, Nanoscale 7(35), 14561 (2015)
Full text