Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2019, Vol. 14 Issue (1): 13609   https://doi.org/10.1007/s11467-018-0863-2
  本期目录
Majorana fermions in semiconducting nanowire and Fulde–Ferrell superconductor hybrid structures
Jia Liu1,2(), Chun Fai Chan2, Ming Gong2,3()
1. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
2. Department of Physics and Center of Coherence, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
3. Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(12294 KB)  
Abstract

The novel idea that spin-orbit coupling (SOC) and an s-wave pairing system can lead to induced pwave pairing with a strong magnetic limit, has stimulated widespread interest in searching for Majorana fermions (MFs) in semiconductor-superconductor hybrid structures. However, despite major advances in the semiconductor nanotechnology, this system has several inherent limitations that prohibit the realization and identification of MFs. We overcome these limitations by replacing the s-wave superconductor with the type-II Fulde–Ferrell (FF) superconductor, in which the center-of-mass momentum of the Cooper pair renormalizes the in-plane Zeeman field and chemical potential. As a result, MFs can be realized in semiconductor nanowires with small values of the Landé g-factor and high carrier densities. The SOC strength directly influences the topological boundary; thus, the topological phase transition and associated MFs can be engineered by an external electric field. Theoretically, almost all semiconductor nanowires can be used to realize MFs by using the FF superconductor. However, we find that InP nanowire is more suitable for the realization of MFs compared to InAs and InSb nanowires. Thus, this new scheme can take full advantage of the semiconductor nanotechnology for the realization of MFs in semiconductor-superconductor hybrid structures.

Key wordsMajorana fermion    topological transition    Pfaffian    FF-superconductor    hybrid structure
收稿日期: 2018-06-13      出版日期: 2019-01-01
Corresponding Author(s): Jia Liu,Ming Gong   
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(1): 13609.
Jia Liu, Chun Fai Chan, Ming Gong. Majorana fermions in semiconducting nanowire and Fulde–Ferrell superconductor hybrid structures. Front. Phys. , 2019, 14(1): 13609.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0863-2
https://academic.hep.com.cn/fop/CN/Y2019/V14/I1/13609
1 F. Wilczek, Majorana returns, Nat. Phys. 5(9), 614 (2009)
2 E. Majorana, Teoria simmetrica dell’elettrone e del positrone, Nuovo Cim. 14(4), 171 (1937) (in Italian)
https://doi.org/10.1007/BF02961314
3 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
4 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
5 N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)
https://doi.org/10.1103/PhysRevB.61.10267
6 A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Uspekhi 44(10S), 131 (2001)
https://doi.org/10.1070/1063-7869/44/10S/S29
7 S. Das Sarma, M. Freedman, and C. Nayak, Topologically protected qubits from a possible non-Abelian fractional quantum Hall state, Phys. Rev. Lett. 94(16), 166802 (2005)
https://doi.org/10.1103/PhysRevLett.94.166802
8 L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
https://doi.org/10.1103/PhysRevLett.100.096407
9 J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
https://doi.org/10.1103/PhysRevLett.104.040502
10 J. Alicea, Majorana fermions in a tunable semiconductor device, Phys. Rev. B 81(12), 125318 (2010)
https://doi.org/10.1103/PhysRevB.81.125318
11 Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)
https://doi.org/10.1103/PhysRevLett.105.177002
12 R. Lutchyn, J. Sau, and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductorsuperconductor heterostructures, Phys. Rev. Lett. 105(7), 077001 (2010)
https://doi.org/10.1103/PhysRevLett.105.077001
13 A. C. Potter and P. A. Lee, Multichannel generalization of Kitaev’s Majorana end states and a practical route to realize them in thin films, Phys. Rev. Lett. 105(22), 227003 (2010)
https://doi.org/10.1103/PhysRevLett.105.227003
14 J. Liu, Q. Han, L. B. Shao, and Z. D. Wang, Exact solutions for a type of electron pairing model with spinorbit interactions and Zeeman coupling, Phys. Rev. Lett. 107(2), 026405 (2011)
https://doi.org/10.1103/PhysRevLett.107.026405
15 T. H. Hsieh and L. Fu, Majorana fermions and exotic surface andreev bound states in topological superconductors: Application to CuxBi2Se3, Phys. Rev. Lett. 108(10), 107005 (2012)
https://doi.org/10.1103/PhysRevLett.108.107005
16 L. Mao, M. Gong, E. Dumitrescu, S. Tewari, and C. W. Zhang, Hole-doped semiconductor nanowire on top of an s-wave superconductor: A new and experimentally accessible system for Majorana fermions, Phys. Rev. Lett. 108(17), 177001 (2012)
https://doi.org/10.1103/PhysRevLett.108.177001
17 S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346(6209), 602 (2014)
https://doi.org/10.1126/science.1259327
18 E. J. H. Lee, X.-C. Jiang, M. Houzet, R. Aguado, C. M. Lieber, and S. De Franceschi, Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures, NaT. NanotechnoL. 9, 79 (2014)
https://doi.org/10.1038/nnano.2013.267
19 M. T. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus, Majorana bound state in a coupled quantum-dot hybrid-nanowire system, Science 354(6319), 1557 (2016)
https://doi.org/10.1126/science.aaf3961
20 C. W. Zhang, S. Tewari, R. M. Lutchyn, and S. Das Sarma, px+ ipySuperfluid from s-wave interactions of fermionic cold atoms, Phys. Rev. Lett. 101(16), 160401 (2008)
https://doi.org/10.1103/PhysRevLett.101.160401
21 M. Sato and S. Fujimoto, Existence of Majorana fermions and topological order in nodal superconductors with spinorbit interactions in external magnetic fields, Phys. Rev. Lett. 105(21), 217001 (2010)
https://doi.org/10.1103/PhysRevLett.105.217001
22 M. Gong, S. Tewari, and C. W. Zhang, BCS-BEC crossover and topological phase transition in 3D spinorbit coupled degenerate Fermi gases, Phys. Rev. Lett. 107(19), 195303 (2011)
https://doi.org/10.1103/PhysRevLett.107.195303
23 M. Gong, G. Chen, S. T. Jia, and C. W. Zhang, Searching for Majorana fermions in 2D spin-orbit coupled fermi superfluids at finite temperature, Phys. Rev. Lett. 109(10), 105302 (2012)
https://doi.org/10.1103/PhysRevLett.109.105302
24 H. Hu and X. J. Liu, Fulde–Ferrell superfluidity in ultracold Fermi gases with Rashba spin–orbit coupling, New J. Phys. 15(9), 093037 (2013)
https://doi.org/10.1088/1367-2630/15/9/093037
25 X. J. Liu and H. Hu, Topological superfluid in onedimensional spin-orbit-coupled atomic Fermi gases, Phys. Rev. A 85(3), 033622 (2012)
https://doi.org/10.1103/PhysRevA.85.033622
26 L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Majorana fermions in equilibrium and in driven cold-atom quantum wires, Phys. Rev. Lett. 106(22), 220402 (2011)
https://doi.org/10.1103/PhysRevLett.106.220402
27 L. P. Gor’kov and E. I. Rashba, Superconducting 2D system with lifted spin degeneracy: Mixed singlet-triplet state, Phys. Rev. Lett. 87(3), 037004 (2001)
https://doi.org/10.1103/PhysRevLett.87.037004
28 I. Bonalde, W. Bramer-Escamilla, and E. Bauer, Evidence for line nodes in the superconducting energy gap of noncentrosymmetric CePt3Si from magnetic penetration depth measurements, Phys. Rev. Lett. 94(20), 207002 (2005)
https://doi.org/10.1103/PhysRevLett.94.207002
29 N. Kimura, K. Ito, K. Saitoh, Y. Umeda, H. Aoki, and T. Terashima, Pressure-induced superconductivity in noncentrosymmetric heavy-fermion CeRhSi3, Phys. Rev. Lett. 95(24), 247004 (2005)
https://doi.org/10.1103/PhysRevLett.95.247004
30 I. Sugitani, Y. Okuda, H. Shishido, T. Yamada, A. Thamizhavel, E. Yamamoto, T. D. Matsuda, Y. Haga, T. Takeuchi, R. Settai, and Y. Ōnuki, Pressureinduced heavy-fermion superconductivity in antiferromagnet CeIrSi3 without inversion symmetry, J. Phys. Sov. Jpn. 75(4), 043703 (2006)
https://doi.org/10.1143/JPSJ.75.043703
31 H. Mukuda, T. Fujii, T. Ohara, A. Harada, M. Yashima, Y. Kitaoka, Y. Okuda, R. Settai, and Y. Onuki, Enhancement of superconducting transition temperature due to the strong antiferromagnetic spin fluctuations in the noncentrosymmetric heavy-fermion superconductor CeIrSi3: A 29Si NMR study under pressure, Phys. Rev. Lett. 100(10), 107003 (2008)
https://doi.org/10.1103/PhysRevLett.100.107003
32 M. Nishiyama, Y. Inada, and G. Q. Zheng, Spin triplet superconducting state due to broken inversion symmetry in Li2Pt3B, Phys. Rev. Lett. 98(4), 047002 (2007)
https://doi.org/10.1103/PhysRevLett.98.047002
33 S. K. Goh, Y. Mizukami, H. Shishido, D. Watanabe, S. Yasumoto, M. Shimozawa, M. Yamashita, T. Terashima, Y. Yanase, T. Shibauchi, A. I. Buzdin, and Y. Matsuda, Anomalous upper critical field in CeCoIn5/YbCoIn5 superlattices with a Rashba-type heavy fermion interface, Phys. Rev. Lett. 109(15), 157006 (2012)
https://doi.org/10.1103/PhysRevLett.109.157006
34 J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)
https://doi.org/10.1088/0034-4885/75/7/076501
35 C. W. J. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Con. Mat. Phys. 4(1), 113 (2013)
https://doi.org/10.1146/annurev-conmatphys-030212-184337
36 V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336(6084), 1003 (2012)
https://doi.org/10.1126/science.1222360
37 M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device, Nano Lett. 12(12), 6414 (2012)
https://doi.org/10.1021/nl303758w
38 A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero-bias peaks and splitting in an Al– InAs nanowire topological superconductor as a signature of Majorana fermions, Nat. Phys. 8(12), 887 (2012)
39 L. P. Rokhinson, X. Y. Liu, and J. K. Furdyna, The fractional a.C. Josephson effect in a semiconductor– superconductor nanowire as a signature of Majorana particles, Nat. Phys. 8(11), 795 (2012)
40 T. D. Stanescu, S. Tewari, J. D. Sau, and S. Das Sarma, To close or not to close: The fate of the superconducting gap across the topological quantum phase transition in Majorana-carrying semiconductor nanowires, Phys. Rev. Lett. 109(26), 266402 (2012)
https://doi.org/10.1103/PhysRevLett.109.266402
41 C. H. Lin, J. D. Sau, and S. Das Sarma, Zero-bias conductance peak in Majorana wires made of semiconductor/ superconductor hybrid structures, Phys. Rev. B 86(22), 224511 (2012)
https://doi.org/10.1103/PhysRevB.86.224511
42 J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana endstates, Phys. Rev. Lett. 109(26), 267002 (2012)
https://doi.org/10.1103/PhysRevLett.109.267002
43 G. Ben-Shach, A. Haim, I. Appelbaum, Y. Oreg, A. Yacoby, and B. I. Halperin, Detecting Majorana modes in one-dimensional wires by charge sensing, Phys. Rev. B 91(4), 045403 (2015)
https://doi.org/10.1103/PhysRevB.91.045403
44 Y. X. Zeng, C. Lei, G. Chaudhary, and A. H. MacDonald, Quantum anomalous Hall Majorana platform, Phys. Rev. B 97(8), 081102 (2018)
https://doi.org/10.1103/PhysRevB.97.081102
45 D. K. Finnemore, D. E. Mapother, and R. W. Shaw, Critical field curve of superconducting mercury, Phys. Rev. 118(1), 127 (1960)
https://doi.org/10.1103/PhysRev.118.127
46 J. W. Rohlf, Modern Physics from A to Z, Wiley, 1994
47 C. E. Pryor and M. E. Flatte, Landé gfactors and orbital momentum quenching in semiconductor quantum dots, Phys. Rev. Lett. 96(2), 026804 (2006)
https://doi.org/10.1103/PhysRevLett.96.026804
48 M. Gong, L. Mao, S. Tewari, and C. W. Zhang, Majorana fermions under uniaxial stress in semiconductorsuperconductor heterostructures,Phys. Rev. B 87, 060502(R) (2013)
49 P. Ghosh, J. D. Sau, S. Tewari, and S. Das Sarma, Non-Abelian topological order in noncentrosymmetric superconductors with broken time-reversal symmetry, Phys. Rev. B 82(18), 184525 (2010)
https://doi.org/10.1103/PhysRevB.82.184525
50 P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135(3A), A550 (1964)
https://doi.org/10.1103/PhysRev.135.A550
51 G. Koutroulakis, H. Kühne, J. A. Schlueter, J. Wosnitza, and S. E. Brown, Microscopic study of the Fulde–Ferrell– Larkin–Ovchinnikov state in an all-organic superconductor, Phys. Rev. Lett. 116(6), 067003 (2016)
https://doi.org/10.1103/PhysRevLett.116.067003
52 H. Maya, S. Krämer, M. Horvatić, C. Berthier, K. Miyagawa, K. Kanoda, and V. F. Mitrović, Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)2Cu(NCS)2, Nat. Phys. 10, 928 (2014)
53 J. Wosnitza, FFLO states in layered organic superconductors, Ann. Phys. 530(2), 1700282 (2018)
https://doi.org/10.1002/andp.201700282
54 Y. W. Guo and Y. Chen, Topological Fulde–Ferrell and Larkin–Ovchinnikov states in spin-orbit-coupled lattice system, Front. Phys. 13, 137402 (2018)
https://doi.org/10.1007/s11467-017-0728-0
55 W. Chen, M. Gong, R. Shen, and D. Y. Xing, Detecting Fulde–Ferrell superconductors by an Andreev interferometer, New J. Phys. 16(8), 083024 (2014)
https://doi.org/10.1088/1367-2630/16/8/083024
56 C. F. Chan and M. Gong, Pairing symmetry, phase diagram, and edge modes in the topological Fulde–Ferrell– Larkin–Ovchinnikov phase, Phys. Rev. B 89(17), 174501 (2014)
https://doi.org/10.1103/PhysRevB.89.174501
57 C. L. Qu, Z. Zheng, M. Gong, Y. Xu, L. Mao, X. B. Zou, G. C. Guo, and C. W. Zhang, Topological superfluids with finite-momentum pairing and Majorana fermions, Nat. Commun. 4(1), 2710 (2013)
https://doi.org/10.1038/ncomms3710
58 W. Zhang and W. Yi, Topological Fulde–Ferrell–Larkin–Ovchinnikov states in spin–orbit-coupled Fermi gases, Nat. Commun. 4(1), 2711 (2013)
https://doi.org/10.1038/ncomms3711
59 I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys. 89(11), 5815 (2001)
https://doi.org/10.1063/1.1368156
60 J. P. Heida, B. J. vanWees, J. J. Kuipers, T. M. Klapwijk, and G. Borghs, Spin-orbit interaction in a two-dimensional electron gas in a InAs/AlSb quantum well with gate-controlled electron density, Phys. Rev. B 57(19), 11911 (1998)
https://doi.org/10.1103/PhysRevB.57.11911
61 V. A. Guzenko, A. Bringer, J. Knobbe, H. Hardtdegen, and TH. Schäpers, Rashba effect in GaxIn1–xAs/InP quantum wire structures, Appl. Phys. A Mater. Sci. Process. 87(3), 577 (2007)
https://doi.org/10.1007/s00339-007-3899-7
62 W. A. Zein, N. A. Ibrahim, and A. H. Phillips, Spin polarized transport in an AC-driven quantum curved nanowire, Phys. Res. Int. 2011, 505091 (2011)
https://doi.org/10.1155/2011/505091
63 TH. Schäpers, V. A. Guzenko, A. Bringer, M. Akabori, M. Hagedorn, and H. Hardtdegen, Spin–orbit coupling in GaxIn1–xAs/InP two-dimensional electron gases and quantum wire structures, Semicond. Sci. Technol. 24(6), 064001 (2009)
https://doi.org/10.1088/0268-1242/24/6/064001
64 J. G. Powles, B. Holtz, and W. A. B. Evans, New method for determining the chemical potential for condensed matter at high density, J. Chem. Phys. 101(9), 7804 (1994)
https://doi.org/10.1063/1.468417
65 Z. Wilamowski, W. Jantsch, H. Malissa, and U. Rössler, Evidence and evaluation of the Bychkov–Rashba effect in SiGe/Si/SiGe quantum wells, Phys. Rev. B 66(19), 195315 (2002)
https://doi.org/10.1103/PhysRevB.66.195315
66 J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Observation of the zero-field spin splitting of the ground electron subband in GaSb-InAs-GaSb quantum wells, Phys. Rev. B 38, 10142(R) (1988)
67 S. Lamari, Rashba effect in inversion layers on p-type InAs MOSFET’s, Phys. Rev. B 64(24), 245340 (2001)
https://doi.org/10.1103/PhysRevB.64.245340
68 K. L. Litvinenko, L. Nikzad, C. R. Pidgeon, J. Allam, L. F. Cohen, T. Ashley, M. Emeny, W. Zawadzki, and B. N. Murdin, Temperature dependence of the electron Landé g factor in InSb and GaAs, Phys. Rev. B 77(3), 033204 (2008)
https://doi.org/10.1103/PhysRevB.77.033204
69 M. Oestreich and W. Rühle, Temperature dependence of the electron Landé gfactor in GaAs, Phys. Rev. Lett. 74(12), 2315 (1995)
https://doi.org/10.1103/PhysRevLett.74.2315
70 R. Zielke, F. Maier, and D. Loss, Anisotropic gfactor in InAs self-assembled quantum dots, Phys. Rev. B 89(11), 115438 (2014)
https://doi.org/10.1103/PhysRevB.89.115438
71 S. Åsbrink and A. Waśkowska, Pressure-induced critical behavior of KMnF3 close to Pc= 3.1 GPa: X-ray diffraction results, Phys. Rev. B 53, 12 (1996)
https://doi.org/10.1103/PhysRevB.53.12
72 C. Hermann and C. Weisbuch, k→·p→perturbation theory in III-V compounds and alloys: A reexamination, Phys. Rev. B 15(2), 823 (1977)
https://doi.org/10.1103/PhysRevB.15.823
73 Z. W. Zheng, B. Shen, Y. S. Gui, Z. J. Qiu, C. P. Jiang, N. Tang, J. Liu, D. J. Chen, H. M. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, S. L. Guo, J. H. Chu, K. Hoshino, and Y. Arakawa, Enhancement and anisotropy of the Landau gfactor in modulation-doped Al0.22Ga0.78N/GaN heterostructures, J. Appl. Phys. 95(5), 2473 (2004)
https://doi.org/10.1063/1.1642732
74 F. Maier, C. Klöffel, and D. Loss, Tunable g factor and phonon-mediated hole spin relaxation in Ge/Si nanowire quantum dots, Phys. Rev. B 87, 161305(R) (2013)
75 H. Kosaka, A. Kiselev, F. Baron, K. W. Kim, and E. Yablonovitch, Electron g factor engineering in III-V semiconductors for quantum communications, Electron. Lett. 37(7), 464 (2001)
https://doi.org/10.1049/el:20010314
76 A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78(19), 195125 (2008)
https://doi.org/10.1103/PhysRevB.78.195125
77 J. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, and C. M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires, Science 293(5534), 1455 (2001)
https://doi.org/10.1126/science.1062340
78 K. Storm, F. Halvardsson, M. Heurlin, D. Lindgren, A. Gustafsson, P. M. Wu, B. Monemar, and L. Samuelson, Spatially resolved Hall effect measurement in a single semiconductor nanowire, Nat. Nanotechnol. 7(11), 718 (2012)
https://doi.org/10.1038/nnano.2012.190
79 D. Liang and X. P. A. Gao, Strong tuning of spin orbit interaction in an InAs nanowire by surrounding gate, Nano Lett. 12, 6 (2012)
https://doi.org/10.1021/nl301325h
80 J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.4As heterostructure, Phys. Rev. Lett. 78(7), 1335 (1997)
https://doi.org/10.1103/PhysRevLett.78.1335
81 X. W. Zhang and J. B. Xia, Rashba spin-orbit coupling in InSb nanowires under transverse electric field, Phys. Rev. B 74(7), 075304 (2006)
https://doi.org/10.1103/PhysRevB.74.075304
82 The topological gapless phase III is still topological protected because it is impossible to adiabatically tune this phase to a trivial phase without closes the energy gap at zero momentum, see ReF. [56].
83 DetHBdG(kx) = A2+α2k2x , where A=h¯x2+h¯y2−k4/(4m*2)−Δ2−μ¯2+k2(α2+μ/m*), so the energy gap can close only at the critical boundary; see also discussion in ReF. [22].
84 R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma, Search for Majorana fermions in multiband semiconducting nanowires, Phys. Rev. Lett. 106(12), 127001 (2011)
https://doi.org/10.1103/PhysRevLett.106.127001
85 S. K. Yip, Two-dimensional superconductivity with strong spin-orbit interaction, Phys. Rev. B 65(14), 144508 (2002)
https://doi.org/10.1103/PhysRevB.65.144508
86 D. F. Agterberg, Novel magnetic field effects in unconventional superconductors, Physica C 387(1–2), 13 (2003)
https://doi.org/10.1016/S0921-4534(03)00634-8
87 O. Dimitrova and M. V. Feigel’man, Theory of a twodimensional superconductor with broken inversion symmetry, Phys. Rev. B 76(1), 014522 (2007)
https://doi.org/10.1103/PhysRevB.76.014522
88 D. F. Agterberg and R. P. Kaur, Magnetic-field-induced helical and stripe phases in Rashba superconductors, Phys. Rev. B 75(6), 064511 (2007)
https://doi.org/10.1103/PhysRevB.75.064511
89 Z. Zheng, M. Gong, X. B. Zou, C. W. Zhang, and G. C. Guo, Route to observable Fulde-Ferrell-Larkin- Ovchinnikov phases in three-dimensional spin-orbitcoupled degenerate Fermi gases, Phys. Rev. A 87(3), 031602 (2013)
https://doi.org/10.1103/PhysRevA.87.031602
90 Z. Zheng, M. Gong, Y. C. Zhang, X. B. Zou, C. W. Zhang, and G. C. Guo, FFLO superfluids in 2D spin-orbit coupled Fermi Gases, Sci. Rep. 4(1), 6535 (2015)
https://doi.org/10.1038/srep06535
91 A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of superconductors, Zh. Eksp. Teor. Fiz. 47, 1136 (1964)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed