Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (2): 23603
Thermoelectricity in B80-based single-molecule junctions: First-principles investigation
Ying-Xiang Zhen1, Ming Yang2, Rui-Ning Wang1()
1. Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
2. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(1506 KB)  

Thermoelectricity is a thermorelated property that is of great importance in single-molecule junctions. The electrical conductance (σ), electron-derived thermal conductance (κel) and Seebeck coefficient (S) of B80-based single-molecule junctions are investigated by using density functional theory in combination with non-equilibrium Green’s function. When the distance between the left/right electrodes is 11.4 Å, the relationship between σ and κel obeys the Wiedemann–Franz law very well because of the strong hybridization between B80 molecular orbitals and the surface states of Au electrodes. Furthermore, the calculated Lorenz number is close to the famous value in metal or degenerate semiconductors. In addition, S is only –19.09 μV/K at 300 K, thus leading to the smaller electron’s thermoelectric figure of merit (ZelT = S2σT/κel). Interestingly, the strain and chemical potential can modulate B80-based single-molecule junctions from n-type to p-type when the compressive strain reaches –0.6 Å or the chemical potential shifts to –0.16 eV. This might be attributed that S reflects the asymmetry in the electrical conductance with respect to the chemical potential and is proportional to the slopes of the transmission spectrum.

Key wordsthermoelectricity    single-molecule junction    non-equilibrium Green function
收稿日期: 2018-03-25      出版日期: 2018-10-22
. [J]. Frontiers of Physics, 2019, 14(2): 23603.
Ying-Xiang Zhen, Ming Yang, Rui-Ning Wang. Thermoelectricity in B80-based single-molecule junctions: First-principles investigation. Front. Phys. , 2019, 14(2): 23603.
1 A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett. 29(2), 277 (1974)
2 X. Zheng, W. Lu, T. A. Abtew, V. Meunier, and J. Bernholc, Negative differential resistance in C60-based electronic devices, ACS Nano 4(12), 7205 (2010)
3 R. Liu, S. H. Ke, H. U. Baranger, and W. Yang,J. Am. Chem. Soc. 128, 2074 (2005)
4 T. A. Papadopoulos, I. M. Grace, and C. J. Lambert, Control of electron transport through Fano resonances in molecular wires, Phys. Rev. B 74(19), 193306 (2006)
5 W. Wang, T. Lee, and M. A. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B 68(3), 035416 (2003)
6 H. Song, M. A. Reed, and T. Lee, Single molecule electronic devices, Adv. Mater. 23(14), 1583 (2011)
7 P. Reddy, S. Y. Jang, R. A. Segalman, and A. Majumdar, Thermoelectricity in molecular junctions, Science 315(5818), 1568 (2007)
8 M. Paulsson and S. Datta, Thermoelectric effect in molecular electronics, Phys. Rev. B 67(24), 241403 (2003)
9 C. Evangeli, K. Gillemot, E. Leary, M. T. Gonz’alez, G. Rubio-Bollinger, C. J. Lambert, and N. Agraït, Engineering the thermopower of C60 molecular junctions, Nano Lett. 13(5), 2141 (2013)
10 S. K. Yee, J. A. Malen, A. Majumdar, and R. A. Segalman, Thermoelectricity in fullerene–metal heterojunctions, Nano Lett. 11(10), 4089 (2011)
11 F. Hüser and G. C. Solomon, J. Phys. Chem. C 119, 14056 (2015)
12 Y. Dubi and M. Di Ventra, Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions, Rev. Mod. Phys. 83(1), 131 (2011)
13 A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res. 41(1), 399 (2011)
14 M. Tsutsui, T. Morikawa, Y. He, A. Arima, and M. Taniguchi, High thermopower of mechanically stretched single-molecule junctions, Sci. Rep. 5(1), 11519 (2015)
15 A. Torres, R. B. Pontes, A. J. R. da Silva, and A. Fazzio, Tuning the thermoelectric properties of a single-molecule junction by mechanical stretching, Phys. Chem. Chem. Phys. 17(7), 5386 (2015)
16 R. Q. Wang, L. Sheng, R. Shen, B. Wang, and D. Y. Xing, Thermoelectric effect in single-molecule-magnet junctions,Phys. Rev. Lett. 105(5), 057202 (2010)
17 K. Yoshida, L. Hamada, S. Sakata, A. Umeno, M. Tsukada, and K. Hirakawa, Gate-tunable large negative tunnel magnetoresistance in Ni–C60–Ni single molecule transistors, Nano Lett. 13(2), 481 (2013)
18 A. Tan, J. Balachandran, S. Sadat, V. Gavini, B. D. Dunietz, S. Y. Jang, and P. Reddy, Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, J. Am. Chem. Soc. 133(23), 8838 (2011)
19 Y. S. Liu and Y. C. Chen, Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations, Phys. Rev. B 79(19), 193101 (2009)
20 I. Pallecchi, F. Telesio, D. Li, A. Fête, S. Gariglio, J. M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, and D. Marré, Giant oscillating thermopower at oxide interfaces, Nat. Commun. 6(1), 6678 (2015)
21 U. Sivan and Y. Imry, Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge, Phys. Rev. B 33(1), 551 (1986)
22 X. Shi, L. D. Chen, S. Q. Bai, X. Y. Huang, X. Y. Zhao, Q. Yao, and C. Uher, Influence of fullerene dispersion on high temperature thermoelectric properties of BayCo4Sb12-based composites, J. Appl. Phys. 102(10), 103709 (2007)
23 C. A. Perroni, D. Ninno, and V. Cataudella, Electronvibration effects on the thermoelectric efficiency of molecular junctions, Phys. Rev. B 90(12), 125421 (2014)
24 G. D. Mahan and J. O. Sofo, The best thermoelectric,Proc. Natl. Acad. Sci. USA 93(15), 7436 (1996)
25 Y. S. Liu, B. C. Hsu, and Y. C. Chen, Effect of thermoelectric cooling in nanoscale junctions, J. Phys. Chem. C 115(13), 6111 (2011)
26 Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317(5839), 787 (2007)
27 T. Shiota, A. I. Mares, A. M. C. Valkering, T. H. Oosterkamp, and J. M. van Ruitenbeek, Mechanical properties of Pt monatomic chains, Phys. Rev. B 77(12), 125411 (2008)
28 J. C. Klöckner, R. Siebler, J. C. Cuevas, and F. Pauly, Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: Electrons, phonons, and photons, Phys. Rev. B 95(24), 245404 (2017)
29 C. A. Perroni, D. Ninno, and V. Cataudella, Thermoelectric efficiency of molecular junctions, J. Phys.: Condens. Matter 28(37), 373001 (2016)
30 B. C. Hsu, C. W. Chiang, and Y. C. Chen, Effect of electron–vibration interactions on the thermoelectric efficiency of molecular junctions, Nanotechnology 23(27), 275401 (2012)
31 Y. Xue, S. Datta, and M. A. Ratner, First-principles based matrix Green’s function approach to molecular electronic devices: general formalism, Chem. Phys. 281(2–3), 151 (2002)
32 A. R. Rocha, V. M. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito, Spin and molecular electronics in atomically generated orbital landscapes, Phys. Rev. B 73(8), 085414 (2006)
33 D. R. Hamann, M. Schlüter, and C. Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
34 N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43(3), 1993 (1991)
35 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
36 H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
37 B. Kubala, J. König, and J. Pekola, Violation of the Wiedemann–Franz law in a single-electron transistor, Phys. Rev. Lett. 100(6), 066801 (2008)
38 G. Gómez-Silva, O. Ávalos-Ovando, M. L. Ladrón de Guevara, and P. A. Orellana, Enhancement of thermoelectric efficiency and violation of the Wiedemann–Franz law due to Fano effect, J. Appl. Phys. 111(5), 053704 (2012)
39 R. N. Wang, G. Y. Dong, S. F. Wang, G. S. Fu, and J. L. Wang, Impact of contact couplings on thermoelectric properties of anti, Fano, and Breit-Wigner resonant junctions, J. Appl. Phys. 120(18), 184303 (2016)
40 R. Stadler and T. Markussen, Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications, J. Chem. Phys. 135(15), 154109 (2011)
41 N. Hauptmann, F. Mohn, L. Gross, G. Meyer, T. Frederiksen, and R. Berndt, Force and conductance during contact formation to a C60 molecule,New J. Phys. 14(7), 073032 (2012)
42 K. S. Thygesen and A. Rubio, Renormalization of molecular quasiparticle levels at metal-molecule interfaces: Trends across binding regimes, Phys. Rev. Lett. 102(4), 046802 (2009)
43 H. Usui and K. Kuroki, Enhanced power factor and reduced Lorenz number in the Wiedemann–Franz law due to pudding mold type band structures, J. Appl. Phys. 121(16), 165101 (2017)
Full text