Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (2): 23603   https://doi.org/10.1007/s11467-018-0865-0
  本期目录
Thermoelectricity in B80-based single-molecule junctions: First-principles investigation
Ying-Xiang Zhen1, Ming Yang2, Rui-Ning Wang1()
1. Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
2. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(1506 KB)  
Abstract

Thermoelectricity is a thermorelated property that is of great importance in single-molecule junctions. The electrical conductance (σ), electron-derived thermal conductance (κel) and Seebeck coefficient (S) of B80-based single-molecule junctions are investigated by using density functional theory in combination with non-equilibrium Green’s function. When the distance between the left/right electrodes is 11.4 Å, the relationship between σ and κel obeys the Wiedemann–Franz law very well because of the strong hybridization between B80 molecular orbitals and the surface states of Au electrodes. Furthermore, the calculated Lorenz number is close to the famous value in metal or degenerate semiconductors. In addition, S is only –19.09 μV/K at 300 K, thus leading to the smaller electron’s thermoelectric figure of merit (ZelT = S2σT/κel). Interestingly, the strain and chemical potential can modulate B80-based single-molecule junctions from n-type to p-type when the compressive strain reaches –0.6 Å or the chemical potential shifts to –0.16 eV. This might be attributed that S reflects the asymmetry in the electrical conductance with respect to the chemical potential and is proportional to the slopes of the transmission spectrum.

Key wordsthermoelectricity    single-molecule junction    non-equilibrium Green function
收稿日期: 2018-03-25      出版日期: 2018-10-22
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(2): 23603.
Ying-Xiang Zhen, Ming Yang, Rui-Ning Wang. Thermoelectricity in B80-based single-molecule junctions: First-principles investigation. Front. Phys. , 2019, 14(2): 23603.
 链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0865-0
http://academic.hep.com.cn/fop/CN/Y2019/V14/I2/23603
1 A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett. 29(2), 277 (1974)
https://doi.org/10.1016/0009-2614(74)85031-1
2 X. Zheng, W. Lu, T. A. Abtew, V. Meunier, and J. Bernholc, Negative differential resistance in C60-based electronic devices, ACS Nano 4(12), 7205 (2010)
https://doi.org/10.1021/nn101902r
3 R. Liu, S. H. Ke, H. U. Baranger, and W. Yang,J. Am. Chem. Soc. 128, 2074 (2005)
4 T. A. Papadopoulos, I. M. Grace, and C. J. Lambert, Control of electron transport through Fano resonances in molecular wires, Phys. Rev. B 74(19), 193306 (2006)
https://doi.org/10.1103/PhysRevB.74.193306
5 W. Wang, T. Lee, and M. A. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B 68(3), 035416 (2003)
https://doi.org/10.1103/PhysRevB.68.035416
6 H. Song, M. A. Reed, and T. Lee, Single molecule electronic devices, Adv. Mater. 23(14), 1583 (2011)
https://doi.org/10.1002/adma.201004291
7 P. Reddy, S. Y. Jang, R. A. Segalman, and A. Majumdar, Thermoelectricity in molecular junctions, Science 315(5818), 1568 (2007)
https://doi.org/10.1126/science.1137149
8 M. Paulsson and S. Datta, Thermoelectric effect in molecular electronics, Phys. Rev. B 67(24), 241403 (2003)
https://doi.org/10.1103/PhysRevB.67.241403
9 C. Evangeli, K. Gillemot, E. Leary, M. T. Gonz’alez, G. Rubio-Bollinger, C. J. Lambert, and N. Agraït, Engineering the thermopower of C60 molecular junctions, Nano Lett. 13(5), 2141 (2013)
https://doi.org/10.1021/nl400579g
10 S. K. Yee, J. A. Malen, A. Majumdar, and R. A. Segalman, Thermoelectricity in fullerene–metal heterojunctions, Nano Lett. 11(10), 4089 (2011)
https://doi.org/10.1021/nl2014839
11 F. Hüser and G. C. Solomon, J. Phys. Chem. C 119, 14056 (2015)
https://doi.org/10.1021/acs.jpcc.5b04106
12 Y. Dubi and M. Di Ventra, Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions, Rev. Mod. Phys. 83(1), 131 (2011)
https://doi.org/10.1103/RevModPhys.83.131
13 A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res. 41(1), 399 (2011)
https://doi.org/10.1146/annurev-matsci-062910-100445
14 M. Tsutsui, T. Morikawa, Y. He, A. Arima, and M. Taniguchi, High thermopower of mechanically stretched single-molecule junctions, Sci. Rep. 5(1), 11519 (2015)
https://doi.org/10.1038/srep11519
15 A. Torres, R. B. Pontes, A. J. R. da Silva, and A. Fazzio, Tuning the thermoelectric properties of a single-molecule junction by mechanical stretching, Phys. Chem. Chem. Phys. 17(7), 5386 (2015)
https://doi.org/10.1039/C4CP04635H
16 R. Q. Wang, L. Sheng, R. Shen, B. Wang, and D. Y. Xing, Thermoelectric effect in single-molecule-magnet junctions,Phys. Rev. Lett. 105(5), 057202 (2010)
https://doi.org/10.1103/PhysRevLett.105.057202
17 K. Yoshida, L. Hamada, S. Sakata, A. Umeno, M. Tsukada, and K. Hirakawa, Gate-tunable large negative tunnel magnetoresistance in Ni–C60–Ni single molecule transistors, Nano Lett. 13(2), 481 (2013)
https://doi.org/10.1021/nl303871x
18 A. Tan, J. Balachandran, S. Sadat, V. Gavini, B. D. Dunietz, S. Y. Jang, and P. Reddy, Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, J. Am. Chem. Soc. 133(23), 8838 (2011)
https://doi.org/10.1021/ja202178k
19 Y. S. Liu and Y. C. Chen, Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations, Phys. Rev. B 79(19), 193101 (2009)
https://doi.org/10.1103/PhysRevB.79.193101
20 I. Pallecchi, F. Telesio, D. Li, A. Fête, S. Gariglio, J. M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, and D. Marré, Giant oscillating thermopower at oxide interfaces, Nat. Commun. 6(1), 6678 (2015)
https://doi.org/10.1038/ncomms7678
21 U. Sivan and Y. Imry, Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge, Phys. Rev. B 33(1), 551 (1986)
https://doi.org/10.1103/PhysRevB.33.551
22 X. Shi, L. D. Chen, S. Q. Bai, X. Y. Huang, X. Y. Zhao, Q. Yao, and C. Uher, Influence of fullerene dispersion on high temperature thermoelectric properties of BayCo4Sb12-based composites, J. Appl. Phys. 102(10), 103709 (2007)
https://doi.org/10.1063/1.2811936
23 C. A. Perroni, D. Ninno, and V. Cataudella, Electronvibration effects on the thermoelectric efficiency of molecular junctions, Phys. Rev. B 90(12), 125421 (2014)
https://doi.org/10.1103/PhysRevB.90.125421
24 G. D. Mahan and J. O. Sofo, The best thermoelectric,Proc. Natl. Acad. Sci. USA 93(15), 7436 (1996)
https://doi.org/10.1073/pnas.93.15.7436
25 Y. S. Liu, B. C. Hsu, and Y. C. Chen, Effect of thermoelectric cooling in nanoscale junctions, J. Phys. Chem. C 115(13), 6111 (2011)
https://doi.org/10.1021/jp110920q
26 Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317(5839), 787 (2007)
https://doi.org/10.1126/science.1145220
27 T. Shiota, A. I. Mares, A. M. C. Valkering, T. H. Oosterkamp, and J. M. van Ruitenbeek, Mechanical properties of Pt monatomic chains, Phys. Rev. B 77(12), 125411 (2008)
https://doi.org/10.1103/PhysRevB.77.125411
28 J. C. Klöckner, R. Siebler, J. C. Cuevas, and F. Pauly, Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: Electrons, phonons, and photons, Phys. Rev. B 95(24), 245404 (2017)
https://doi.org/10.1103/PhysRevB.95.245404
29 C. A. Perroni, D. Ninno, and V. Cataudella, Thermoelectric efficiency of molecular junctions, J. Phys.: Condens. Matter 28(37), 373001 (2016)
https://doi.org/10.1088/0953-8984/28/37/373001
30 B. C. Hsu, C. W. Chiang, and Y. C. Chen, Effect of electron–vibration interactions on the thermoelectric efficiency of molecular junctions, Nanotechnology 23(27), 275401 (2012)
https://doi.org/10.1088/0957-4484/23/27/275401
31 Y. Xue, S. Datta, and M. A. Ratner, First-principles based matrix Green’s function approach to molecular electronic devices: general formalism, Chem. Phys. 281(2–3), 151 (2002)
https://doi.org/10.1016/S0301-0104(02)00446-9
32 A. R. Rocha, V. M. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito, Spin and molecular electronics in atomically generated orbital landscapes, Phys. Rev. B 73(8), 085414 (2006)
https://doi.org/10.1103/PhysRevB.73.085414
33 D. R. Hamann, M. Schlüter, and C. Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)
https://doi.org/10.1103/PhysRevLett.43.1494
34 N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43(3), 1993 (1991)
https://doi.org/10.1103/PhysRevB.43.1993
35 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
36 H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
https://doi.org/10.1103/PhysRevB.13.5188
37 B. Kubala, J. König, and J. Pekola, Violation of the Wiedemann–Franz law in a single-electron transistor, Phys. Rev. Lett. 100(6), 066801 (2008)
https://doi.org/10.1103/PhysRevLett.100.066801
38 G. Gómez-Silva, O. Ávalos-Ovando, M. L. Ladrón de Guevara, and P. A. Orellana, Enhancement of thermoelectric efficiency and violation of the Wiedemann–Franz law due to Fano effect, J. Appl. Phys. 111(5), 053704 (2012)
https://doi.org/10.1063/1.3689817
39 R. N. Wang, G. Y. Dong, S. F. Wang, G. S. Fu, and J. L. Wang, Impact of contact couplings on thermoelectric properties of anti, Fano, and Breit-Wigner resonant junctions, J. Appl. Phys. 120(18), 184303 (2016)
https://doi.org/10.1063/1.4967751
40 R. Stadler and T. Markussen, Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications, J. Chem. Phys. 135(15), 154109 (2011)
https://doi.org/10.1063/1.3653790
41 N. Hauptmann, F. Mohn, L. Gross, G. Meyer, T. Frederiksen, and R. Berndt, Force and conductance during contact formation to a C60 molecule,New J. Phys. 14(7), 073032 (2012)
https://doi.org/10.1088/1367-2630/14/7/073032
42 K. S. Thygesen and A. Rubio, Renormalization of molecular quasiparticle levels at metal-molecule interfaces: Trends across binding regimes, Phys. Rev. Lett. 102(4), 046802 (2009)
https://doi.org/10.1103/PhysRevLett.102.046802
43 H. Usui and K. Kuroki, Enhanced power factor and reduced Lorenz number in the Wiedemann–Franz law due to pudding mold type band structures, J. Appl. Phys. 121(16), 165101 (2017)
https://doi.org/10.1063/1.4981890
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed