Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (2): 21601   https://doi.org/10.1007/s11467-018-0866-z
  本期目录
Logic Bell state concentration with parity check measurement
Jiu Liu1, Lan Zhou2, Wei Zhong1, Yu-Bo Sheng1,3()
1. Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
3. Key Lab of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003, China
 全文: PDF(3241 KB)  
Abstract

Logic qubit plays an important role in current quantum communication. In this paper, we propose an efficient entanglement concentration protocol (ECP) for a new kind of logic Bell state, where the logic qubit is the concatenated Greenber–Horne–Zeilinger (C-GHZ) state. Our ECP relies on the nondemolition polarization parity check (PPC) gates constructed with cross-Kerr nonlinearity, and can distill one pair of maximally entangled logic Bell state from two same pairs of less-entangled logic Bell states. Benefit from the nondemolition PPC gates, the concentrated maximally entangled logic Bell state can be remained for further application. Moreover, our ECP can be repeated to further concentrate the less-entangled logic Bell state. By repeating the ECP, the total success probability can be effectively increased. Based on above features, this ECP may be useful in future long-distance quantum communication.

Key wordsconcatenated Greenber–Horne–Zeilinger (C-GHZ) state    single photon    cross-Kerr nonlinearity
收稿日期: 2018-07-21      出版日期: 2018-10-24
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(2): 21601.
Jiu Liu, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Logic Bell state concentration with parity check measurement. Front. Phys. , 2019, 14(2): 21601.
 链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0866-z
http://academic.hep.com.cn/fop/CN/Y2019/V14/I2/21601
1 E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
https://doi.org/10.1038/35051009
2 C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky– Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
3 T. C. Li and Z. Q. Yin, Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator, Sci. Bull. 61(2), 163 (2016)
https://doi.org/10.1007/s11434-015-0990-x
4 M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
https://doi.org/10.1007/s11467-017-0684-8
5 P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
https://doi.org/10.1007/s11467-016-0553-x
6 A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
7 D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons, Sci. Bull. 60(12), 1128 (2015)
https://doi.org/10.1007/s11434-015-0801-4
8 G. L. Long and X. S. Liu, Theoretically efficient high capacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
9 F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
10 C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Quantum secure direct communication with high dimension quantum superdense coding, Phys. Rev. A 71(4), 044305 (2005)
https://doi.org/10.1103/PhysRevA.71.044305
11 J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144 (2016)
https://doi.org/10.1038/lsa.2016.144
12 W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)
https://doi.org/10.1103/PhysRevLett.118.220501
13 F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, Experimental long-distance quantum secret direct communication, Sci. Bull. 62(22), 1519 (2017)
https://doi.org/10.1016/j.scib.2017.10.023
14 Y. B. Sheng and L. Zhou, Distributed secure quantum machine learning, Sci. Bull. 62(14), 1025 (2017)
https://doi.org/10.1016/j.scib.2017.06.007
15 X. Q. Shao, T. Y. Zheng, and S. Zhang, Engineering steady three-atom singlet states via quantum-jump based feedback, Phys. Rev. A 85(4), 042308 (2012)
https://doi.org/10.1103/PhysRevA.85.042308
16 X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission, Phys. Rev. A 89(1), 012319 (2014)
https://doi.org/10.1103/PhysRevA.89.012319
17 X. Q. Shao, J. B. You, T. Y. Zheng, C. H. Oh, and S. Zhang, Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89(5), 052313 (2014)
https://doi.org/10.1103/PhysRevA.89.052313
18 T. Y. Ye, Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise, Sci. China Phys. Mech. Astron. 58, 040301 (2015)
https://doi.org/10.1360/SSPMA2014-00289
19 W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, Improved multiparty quantum key agreement in travelling mode, Sci. China Phys. Mech. Astron. 59(12), 120311 (2016)
https://doi.org/10.1007/s11433-016-0322-3
20 C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)
https://doi.org/10.1007/s11467-017-0694-6
21 M. Y. Wang, F. L. Yan, and T. Gao, Generation of four photon polarization entangled decoherence-free states with cross-Kerr nonlinearity, Sci. Rep. 6(1), 38233 (2016)
https://doi.org/10.1038/srep38233
22 A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. Abdel-Aty, Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)
https://doi.org/10.1007/s11467-017-0717-3
23 J. Batle, A. Farouk, O. Tarawneh, and S. Abdalla, Multipartite quantum correlations among atoms in QED cavities,Front. Phys. 13(1), 130305 (2018)
https://doi.org/10.1007/s11467-017-0711-9
24 C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722 (1996)
https://doi.org/10.1103/PhysRevLett.76.722
25 W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, Quantum repeaters based on entanglement purification, Phys. Rev. A 59(1), 169 (1999)
https://doi.org/10.1103/PhysRevA.59.169
26 J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)
https://doi.org/10.1038/35074041
27 D. Gonţa and P. van Loock, High-fidelity entanglement purification using chains of atoms and optical cavities, Phys. Rev. A 86(5), 052312 (2012)
https://doi.org/10.1103/PhysRevA.86.052312
28 M. Zwerger, H. J. Briegel, and W. Dür, Universal and optimal error thresholds for measurement-based entanglement purification, Phys. Rev. Lett. 110(26), 260503 (2013)
https://doi.org/10.1103/PhysRevLett.110.260503
29 M. Zwerger, H. J. Briegel, and W. Dür, Robustness of hashing protocols for entanglement purification, Phys. Rev. A 90(1), 012314 (2014)
https://doi.org/10.1103/PhysRevA.90.012314
30 J. Z. Bernád, J. M. Torres, L. Kunz, and G. Alber, Multiphoton-state-assisted entanglement purification of material qubits, Phys. Rev. A 93(3), 032317 (2016)
https://doi.org/10.1103/PhysRevA.93.032317
31 C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53(4), 2046 (1996)
https://doi.org/10.1103/PhysRevA.53.2046
32 S. Bose, V. Vedral, and P. L. Knight, Purification via entanglement swapping and conserved entanglement, Phys. Rev. A 60(1), 194 (1999)
https://doi.org/10.1103/PhysRevA.60.194
33 T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)
https://doi.org/10.1103/PhysRevA.64.012304
34 Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A 64(1), 014301 (2001)
https://doi.org/10.1103/PhysRevA.64.014301
35 Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)
https://doi.org/10.1103/PhysRevA.85.012307
36 F. G. Deng, Optimal nonlocal multipartite entanglement concentration based on projection measurements, Phys. Rev. A 85(2), 022311 (2012)
https://doi.org/10.1103/PhysRevA.85.022311
37 Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary Wstates, Phys. Rev. A 85(4), 042302 (2012)
https://doi.org/10.1103/PhysRevA.85.042302
38 Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, Atomic and photonic entanglement concentration via photonic Faraday rotation, Phys. Rev. A 86(3), 034305 (2012)
https://doi.org/10.1103/PhysRevA.86.034305
39 C. Cao, C. Wang, L. Y. He, and R. Zhang, Atomic entanglement purification and concentration using coherent state input-output process in low-Qcavity QED regime, Opt. Express 21(4), 4093 (2013)
https://doi.org/10.1364/OE.21.004093
40 Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, Efficient N-particle W state concentration with different parity check gates, Sci. China Phys. Mech. Astron. 58(6), 060301 (2015)
https://doi.org/10.1007/s11433-015-5672-9
41 M. Y. Wang, F. L. Yan, and J. Z. Xu, Perfect entanglement concentration of an arbitrary four-photon polarization entangled state via quantum nondemolition detectors, J. Phys. B-At. Mol. Opt. 49(15), 155502 (2016)
https://doi.org/10.1088/0953-4075/49/15/155502
42 C. C. Qu, L. Zhou, and Y. B. Sheng, Entanglement concentration for concatenated Greenberger– Horne–Zeilinger state, Quantum Inform. Process 14(11), 4131 (2015)
https://doi.org/10.1007/s11128-015-1113-y
43 J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang, Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity, Quantum Inform. Process 15(4), 1669 (2016)
https://doi.org/10.1007/s11128-016-1246-7
44 A. M. Steane and B. Ibinson, Fault-tolerant logical gate networks for Calderbank–Shor–Steane codes, Phys. Rev. A 72(5), 052335 (2005)
https://doi.org/10.1103/PhysRevA.72.052335
45 S. Muralidharan, C. L. Zou, L. S. Li, J. M. Wen, and L. Jiang, Overcoming erasure errors with multilevel systems, New J. Phys. 19(1), 013026 (2017)
https://doi.org/10.1088/1367-2630/aa573a
46 F. Fröwis and W. Dür, Stable macroscopic quantum superpositions, Phys. Rev. Lett. 106(11), 110402 (2011)
https://doi.org/10.1103/PhysRevLett.106.110402
47 H. Lu, L. K. Chen, C. Liu, P. Xu, X. C. Yao, L. Li, N. L. Liu, B. Zhao, Y. A. Chen, and J. W. Pan, Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions, Nat. Photonics 8(5), 364 (2014)
https://doi.org/10.1038/nphoton.2014.81
48 F. Fröwis and W. Dür, Stability of encoded macroscopic quantum superpositions, Phys. Rev. A 85(5), 052329 (2012)
https://doi.org/10.1103/PhysRevA.85.052329
49 F. Kesting, F. Fröwis, and W. Dür, Effective noise channels for encoded quantum systems, Phys. Rev. A 88(4), 042305 (2013)
https://doi.org/10.1103/PhysRevA.88.042305
50 D. Ding, F. L. Yan, and T. Gao, Preparation of kmphoton concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales, JOSA B 30(11), 3075 (2013)
https://doi.org/10.1364/JOSAB.30.003075
51 L. Zhou and Y. B. Sheng, Complete logic Bell-state analysis assisted with photonic Faraday rotation, Phys. Rev. A 92(4), 042314 (2015)
https://doi.org/10.1103/PhysRevA.92.042314
52 Y. B. Sheng and L. Zhou, Two-step complete polarization logic Bell-state analysis, Sci. Rep. 5(1), 13453 (2015)
https://doi.org/10.1038/srep13453
53 L. Zhou and Y. B. Sheng, Feasible logic Bell-state analysis with linear optics, Sci. Rep. 6(1), 20901 (2016)
https://doi.org/10.1038/srep20901
54 T. C. Ralph, A. J. F. Hayes, and A. Gilchrist, Losstolerant optical qubits, Phys. Rev. Lett. 95(10), 100501 (2005)
https://doi.org/10.1103/PhysRevLett.95.100501
55 A. Gilchrist, A. J. F. Hayes, and T. C. Ralph, Efficient parity-encoded optical quantum computing, Phys. Rev. A 75(5), 052328 (2007)
https://doi.org/10.1103/PhysRevA.75.052328
56 J. Borregaard, A. S. Sørensen, J. I. Cirac, and M. D. Lukin, Efficient quantum computation in a network with probabilistic gates and logical encoding, Phys. Rev. A 95(4), 042312 (2017)
https://doi.org/10.1103/PhysRevA.95.042312
57 S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, Ultrafast and fault-tolerant quantum communication across long distances, Phys. Rev. Lett. 112(25), 250501 (2014)
https://doi.org/10.1103/PhysRevLett.112.250501
58 F. Ewert, M. Bergmann, and P. van Loock, Ultrafast long-distance quantum communication with static linear optics, Phys. Rev. Lett. 117(21), 210501 (2016)
https://doi.org/10.1103/PhysRevLett.117.210501
59 K. Nemoto and W. J. Munro, Nearly deterministic linear optical controlled-not gate, Phys. Rev. Lett. 93(25), 250502 (2004)
https://doi.org/10.1103/PhysRevLett.93.250502
60 B. He, Q. Lin, and C. Simon, Cross-Kerr nonlinearity between continuous-mode coherent states and single photons, Phys. Rev. A 83(5), 053826 (2011)
https://doi.org/10.1103/PhysRevA.83.053826
61 Y. Q. He, D. Ding, F. L. Yan, and T. Gao, Exploration of photon-number entangled states using weak nonlinearities, Opt. Express 23(17), 21671 (2015)
https://doi.org/10.1364/OE.23.021671
62 X. M. Xiu, Q. Y. Li, Y. F. Lin, H. K. Dong, L. Dong, and Y. J. Gao, Preparation of four-photon polarization entangled decoherence-free states employing weak cross-Kerr nonlinearities, Phys. Rev. A 94(4), 042321 (2016)
https://doi.org/10.1103/PhysRevA.94.042321
63 L. Dong, Y. F. Yin, C. Cui, H. K. Dong, X. M. Xiu, and Y. J. Gao, Fault-tolerant distribution of GHZ states and controlled DSQC based on parity analyses, Opt. Express 25(16), 18581 (2017)
https://doi.org/10.1364/OE.25.018581
64 L. Dong, J. X. Wang, Q. Y. Li, H. Z. Shen, H. K. Dong, X. M. Xiu, and Y. J. Gao, Single logical qubit information encoding scheme with the minimal optical decoherence free subsystem, Opt. Lett. 41(5), 1030 (2016)
https://doi.org/10.1364/OL.41.001030
65 L. Dong, Y. F. Lin, Q. Y. Li, H. K. Dong, X. M. Xiu, and Y. J. Gao, Generation of three-photon polarization entangled decoherence-free states, Ann. Phys. 371, 287 (2016)
https://doi.org/10.1016/j.aop.2016.04.022
66 P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79(1), 135 (2007)
https://doi.org/10.1103/RevModPhys.79.135
67 G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature 495(7440), 205 (2013)
https://doi.org/10.1038/nature11902
68 A. Feizpour, M. Hallaji, G. Dmochowski, and A. M. Steinberg, Observation of the nonlinear phase shift due to single post-selected photons, Nat. Phys. 11(11), 905 (2015)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed