Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2018 Impact Factor: 2.483

Frontiers of Physics  2019, Vol. 14 Issue (2): 23602   https://doi.org/10.1007/s11467-018-0868-x
  本期目录
Finite temperature physics of 1D topological Kondo insulator: Stable Haldane phase, emergent energy scale and beyond
Yin Zhong1(), Qin Wang1, Yu Liu2,3(), Hai-Feng Song2,3, Ke Liu4, Hong-Gang Luo1,5()
1. Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000, China
2. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
3. Software Center for High Performance Numerical Simulation,China Academy of Engineering Physics, Beijing 100088, China
4. Arnold Sommerfeld Center for Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
5. Beijing Computational Science Research Center, Beijing 100084, China
 全文: PDF(1075 KB)  
Abstract

In recent years, interacting topological insulators have emerged as new frontiers in condensed matter physics, and the hotly studied topological Kondo insulator (TKI) is one of such prototypes. Although its zero-temperature ground-state has been widely investigated, the finite temperature physics on TKI is largely unknown. Here, we explore the finite temperature properties in a simplified model for TKI, namely the one-dimensional p-wave periodic Anderson model, with numerically exact determinant quantum Monte Carlo simulation. It is found that the topological Haldane phase established for groundstate is still stable against small thermal fluctuation and its characteristic edge magnetization develops at low temperature. Such facts emphasize the robustness of (symmetry-protected) topological order against temperature effect, which always exists at real physical world. Moreover, we use the saturated low-T spin structure factor and the 1T-law of susceptibility to detect the free edge spin moment, interestingly the low-temperature upturn behavior of the latter one is similar to experimental finding in SmB6 at T<50 K. It implies that similar physical mechanism may work both for idealized models and realistic correlated electron materials. We have also identified an emergent energy scale Tcr, which signals a crossover into interesting low-T regime and seems to be the expected Ruderman–Kittel–Kasuya–Yosida coupling. Finally, the collective Kondo screening effect has been examined and it is heavily reduced at boundary, which may give a fruitful playground for novel physics beyond the wellestablished Haldane phase and topological band insulators.

Key wordstopological Kondo insulator    heavy fermion    quantum Monte Carlo    Haldane phase
收稿日期: 2018-04-09      出版日期: 2018-10-24
 引用本文:   
. [J]. Frontiers of Physics, 2019, 14(2): 23602.
Yin Zhong, Qin Wang, Yu Liu, Hai-Feng Song, Ke Liu, Hong-Gang Luo. Finite temperature physics of 1D topological Kondo insulator: Stable Haldane phase, emergent energy scale and beyond. Front. Phys. , 2019, 14(2): 23602.
 链接本文:  
http://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0868-x
http://academic.hep.com.cn/fop/CN/Y2019/V14/I2/23602
1 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
2 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
3 M. Hohenadler and F. F. Assaad, Correlation effects in two-dimensional topological insulators, J. Phys. Condens. Matter 25(14), 143201 (2013)
https://doi.org/10.1088/0953-8984/25/14/143201
4 A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
https://doi.org/10.1103/RevModPhys.88.021004
5 E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88(3), 035001 (2016)
https://doi.org/10.1103/RevModPhys.88.035001
6 C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
https://doi.org/10.1103/RevModPhys.88.035005
7 T. Senthil, Symmetry-protected topological phases of quantum matter, Annu. Rev. Condens. Matter Phys. 6(1), 299 (2015)
https://doi.org/10.1146/annurev-conmatphys-031214-014740
8 C. X. Liu, S. C. Zhang, and X. L. Qi, The quantum anomalous Hall effect: Theory and experiment, Annu. Rev. Condens. Matter Phys. 7(1), 301 (2016)
https://doi.org/10.1146/annurev-conmatphys-031115-011417
9 M. Dzero, J. Xia, V. Galitski, and P. Coleman, Topological Kondo insulators, Annu. Rev. Condens. Matter Phys. 7(1), 249 (2016)
https://doi.org/10.1146/annurev-conmatphys-031214-014749
10 M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological Kondo insulators, Phys. Rev. Lett. 104(10), 106408 (2010)
https://doi.org/10.1103/PhysRevLett.104.106408
11 J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z. R. Ye, M. Xu, Q. Q. Ge, S. Y. Tan, X. H. Niu, M. Xia, B. P. Xie, Y. F. Li, X. H. Chen, H. H. Wen, and D. L. Feng, Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission, Nat. Commun. 4(1), 3010 (2013)
https://doi.org/10.1038/ncomms4010
12 M. Neupane, N. Alidoust, S. Y. Xu, T. Kondo, Y. Ishida, D. J. Kim, C. Liu, I. Belopolski, Y. J. Jo, T. R. Chang, H. T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk, and M. Z. Hasan, Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6, Nat. Commun. 4(1), 2991 (2013)
https://doi.org/10.1038/ncomms3991
13 V. Alexandrov, P. Coleman, and O. Erten, Kondo Breakdown in Topological Kondo Insulators, Phys. Rev. Lett. 114(17), 177202 (2015)
https://doi.org/10.1103/PhysRevLett.114.177202
14 B. S. Tan, Y. T. Hsu, B. Zeng, M. C. Hatnean, N. Harrison, Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M. D. Johannes, T. P. Murphy, J. H. Park, L. Balicas, G. G. Lonzarich, G. Balakrishnan, and S. E. Sebastian, Unconventional Fermi surface in an insulating state, Science 349(6245), 287 (2015)
https://doi.org/10.1126/science.aaa7974
15 G. Baskaran, Majorana Fermi sea in insulating SmB6: A proposal and a theory of quantum oscillations in Kondo insulators, arXiv: 1507.03477
16 O. Erten, P. Y. Chang, P. Coleman, and A. M. Tsvelik, Skyrme Insulators: Insulators at the Brink of Superconductivity, Phys. Rev. Lett. 119(5), 057603 (2017)
https://doi.org/10.1103/PhysRevLett.119.057603
17 A. Thomson and S. Sachdev, Fractionalized Fermi liquid on the surface of a topological Kondo insulator, Phys. Rev. B 93(12), 125103 (2016)
https://doi.org/10.1103/PhysRevB.93.125103
18 O. Erten, P. Ghaemi, and P. Coleman, Kondo breakdown and quantum oscillations in SmB6, Phys. Rev. Lett. 116(4), 046403 (2016)
https://doi.org/10.1103/PhysRevLett.116.046403
19 D. Chowdhury, I. Sodemann, and T. Senthil, Mixedvalence insulators with neutral Fermi surfaces, Nat. Commun. 9(1), 1766 (2018)
https://doi.org/10.1038/s41467-018-04163-2
20 I. Sodemann, D. Chowdhury, and T. Senthil, Quantum oscillations in insulators with neutral Fermi surfaces, Phys. Rev. B 97(4), 045152 (2018)
https://doi.org/10.1103/PhysRevB.97.045152
21 Y. Zhong, Y. Liu, and H.-G. Luo, Topological phase in 1D topological Kondo insulator: Z2 topological insulator, Haldane-like phase and Kondo breakdown, Eur. Phys. J. B 90, 147 (2017)
https://doi.org/10.1140/epjb/e2017-80102-0
22 F. T. Lisandrini, A. M. Lobos, A. O. Dobry, and C. J. Gazza, Topological Kondo insulators in one dimension: Continuous Haldane-type ground-state evolution from the strongly interacting to the noninteracting limit, Phys. Rev. B 96(7), 075124 (2017)
https://doi.org/10.1103/PhysRevB.96.075124
23 X. G. Wen, Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89(4), 041004 (2017)
https://doi.org/10.1103/RevModPhys.89.041004
24 Y. F. Yang, Two-fluid model for heavy electron physics, Rep. Prog. Phys. 79(7), 074501 (2016)
https://doi.org/10.1088/0034-4885/79/7/074501
25 R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Monte Carlo calculations of coupled boson-fermion systems (I), Phys. Rev. D 24(8), 2278 (1981)
https://doi.org/10.1103/PhysRevD.24.2278
26 J. E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study, Phys. Rev. B 31(7), 4403 (1985)
https://doi.org/10.1103/PhysRevB.31.4403
27 R. R. dos Santo, Introduction to quantum Monte Carlo simulations for fermionic systems, Braz. J. Phys. 33, 1 (2003)
https://doi.org/10.1590/S0103-97332003000100003
28 M. Vekić, J. W. Cannon, D. J. Scalapino, R. T. Scalettar, and R. L. Sugar, Competition between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half Filling, Phys. Rev. Lett. 74(12), 2367 (1995)
https://doi.org/10.1103/PhysRevLett.74.2367
29 M. Jiang, N. J. Curro, and R. T. Scalettar, Universal Knight shift anomaly in the periodic Anderson model, Phys. Rev. B 90(24), 241109(R) (2014)
30 H. F. Lin, H. S. Tao, W. X. Guo, and W. M. Liu, Antiferromagnetism and Kondo screening on a honeycomb lattice, Chin. Phys. B 24(5), 057101 (2015)
https://doi.org/10.1088/1674-1056/24/5/057101
31 W. Hu, R. T. Scalettar, E. W. Huang, and B. Moritz, Effects of an additional conduction band on the singletantiferromagnet competition in the periodic Anderson model, Phys. Rev. B 95(23), 235122 (2017)
https://doi.org/10.1103/PhysRevB.95.235122
32 J. Gubernatis, N. Kawashima, and P. Werner, Quantum Monte Carlo Methods: Algorithms for Lattice Models, Cambridge University Press, 2016
https://doi.org/10.1017/CBO9780511902581
33 T. Paiva, G. Esirgen, R. T. Scalettar, C. Huscroft, and A. K. McMahan, Doping-dependent study of the periodic Anderson model in three dimensions, Phys. Rev. B 68(19), 195111 (2003)
https://doi.org/10.1103/PhysRevB.68.195111
34 H. L. Nourse, I. P. McCulloch, C. Janani, and B. J. Powell, Haldane insulator protected by reflection symmetry in the doped Hubbard model on the three-legged ladder, Phys. Rev. B 94(21), 214418 (2016)
https://doi.org/10.1103/PhysRevB.94.214418
35 A. M. Lobos, A. O. Dobry, and V. Galitski, Magnetic end states in a strongly interacting one-dimensional topological Kondo Insulator, Phys. Rev. X 5(2), 021017 (2015)
https://doi.org/10.1103/PhysRevX.5.021017
36 A. Mezio, A. M. Lobos, A. O. Dobry, and C. J. Gazza, Haldane phase in one-dimensional topological Kondo insulators, Phys. Rev. B 92(20), 205128 (2015)
https://doi.org/10.1103/PhysRevB.92.205128
37 I. Hagymási and O. Legeza, Characterization of a correlated topological Kondo insulator in one dimension, Phys. Rev. B 93(16), 165104 (2016)
https://doi.org/10.1103/PhysRevB.93.165104
38 J. C. Nickerson, R. M. White, K. N. Lee, R. Bachmann, R. Geballe, and G. W. Hull, Physical properties of SmB6, Phys. Rev. B 3(6), 2030 (1971)
https://doi.org/10.1103/PhysRevB.3.2030
39 P. Coleman, Introduction to Many Body Physics, Chapters 15 to 18, Cambridge University Press, 2015
https://doi.org/10.1017/CBO9781139020916
40 K. Kummer, S. Patil, A. Chikina, M. Güttler, M. Höppner, et al., Temperature-independent Fermi surface in the Kondo lattice YbRh2Si2, Phys. Rev. X 5(1), 011028 (2015)
https://doi.org/10.1103/PhysRevX.5.011028
41 Q. Y. Chen, D. F. Xu, X. H. Niu, J. Jiang, R. Peng, et al., Direct observation of how the heavy-fermion state develops in CeCoIn5, Phys. Rev. B 96(4), 045107 (2017)
https://doi.org/10.1103/PhysRevB.96.045107
42 E. Abrahams, J. Schmalian, and P. Wölfle, Strongcoupling theory of heavy-fermion criticality, Phys. Rev. B 90(4), 045105 (2014)
https://doi.org/10.1103/PhysRevB.90.045105
43 V. R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, and V. A. Khodel, Strongly correlated Fermi systems as a new state of matter, Front. Phys. 11(5), 117103 (2016)
https://doi.org/10.1007/s11467-016-0608-0
44 Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Locally critical quantum phase transitions in strongly correlated metals, Nature 413(6858), 804 (2001)
https://doi.org/10.1038/35101507
45 T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69(3), 035111 (2004)
https://doi.org/10.1103/PhysRevB.69.035111
46 I. Paul, C. Pépin, and M. R. Norman, Kondo Breakdown and Hybridization Fluctuations in the Kondo-Heisenberg Lattice, Phys. Rev. Lett. 98(2), 026402 (2007)
https://doi.org/10.1103/PhysRevLett.98.026402
47 Y. Zhong, K. Liu, Y. Q. Wang, and H. G. Luo, Alternative Kondo breakdown mechanism: Orbital-selective orthogonal metal transition, Phys. Rev. B Condens. Matter Mater. Phys. 86(11), 115113 (2012)
https://doi.org/10.1103/PhysRevB.86.115113
48 M. Hartstein, W. H. Toews, Y. T. Hsu, B. Zeng, X. Chen, et al., Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6, Nat. Phys. 14(2), 166 (2017)
49 Y. Zhong, Y. Liu, and H. G. Luo, Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential, Front. Phys. 12(5), 127502 (2017)
https://doi.org/10.1007/s11467-017-0690-x
50 R. C. Caro, R. Franco, and J. Silva-Valencia, Spin-liquid state in an inhomogeneous periodic Anderson model, Phys. Rev. A 97(2), 023630 (2018)
https://doi.org/10.1103/PhysRevA.97.023630
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed